
Omniduct Documentation
Release v1.1.19

Matthew Wardrop

May 09, 2022

Contents

1 Supported protocols 1

2 Installation 3

3 Quickstart 5
3.1 Task 1: Create a Presto client that connects direct to the database service 5
3.2 Task 2: Create a Presto client that connects via ssh to a remote server 6
3.3 Task 3: Persist service configuration for use in multiple sessions . 7

4 Deployment 9

5 API & IPython Magics 11
5.1 Core Classes . 11
5.2 Databases . 15
5.3 Filesystems . 90
5.4 Remotes . 118
5.5 Caches . 144
5.6 Registry Management . 156

6 Extensions and Plug-ins 161

7 Contributions 163

8 Indices and tables 165

Python Module Index 167

Index 169

i

ii

CHAPTER 1

Supported protocols

The currently supported protocols are listed below. The string inside the square brackets after the protocol name (if
present) indicates that support for this protocol requires external packages which are not hard-dependencies of om-
niduct. To install them with omniduct, simply add these strings to the list of desired extras as indicated in Installation.

• Databases

– Druid [druid]

– HiveServer2 [hiveserver2]

– Neo4j (experimental)

– Presto [presto]

– PySpark [pyspark]

– Any SQL database supported by SQL Alchemy (e.g. MySQL, Postgres, Oracle, etc) [sqlalchemy]

• Filesystems

– HDFS [webhdfs]

– S3 [s3]

– Local filesystem

• Remotes (also act as filesystems)

– SSH servers, via CLI backend [ssh] or via Paramiko backend [ssh_paramiko]

• REST Services (generic interface)

Adding support for new protocols is straightforward. If your favourite protocol is missing, feel free to contact us for
help writing a patch to support it.

Within each class of protocol (database, filesystem, etc), a certain subset of functionality is guaranteed to be consistent
across protocols, making them largely interchangeable programmatically. The common API for each protocol class
is documented in the API & IPython Magics section, along with any exceptions, caveats and extensions for each
implementation.

1

Omniduct Documentation, Release v1.1.19

2 Chapter 1. Supported protocols

CHAPTER 2

Installation

If your company/organisation has provided a package that wraps around omniduct to provide a library of services,
then a direct installation of omniduct is not required. Otherwise, you can install it using the standard Python package
manager: pip. If you use Python 3, you may need to change pip references to pip3, depending on your system
configuration.

pip install omniduct[<comma separated list of protocols>]

For example, if you want access to Presto and HiveServer2, you can run:

pip install omniduct[presto,hiveserver2]

Omitting the list of protocols (i.e. pip install omniduct) will mean that the external dependencies required to interface
with the protocols indicated in Supported protocols will not be automatically installed. Attempts to use these protocols
will throw an error with instructions as to which additional dependencies you will need to install.

To install omniduct and all possible dependencies, you can install omniduct using:

pip install omniduct[all]

This is only recommended for casual use, as dragging in unneeded dependencies could lead to complications with
other packages on your machine (and is otherwise just generally messy!).

3

Omniduct Documentation, Release v1.1.19

4 Chapter 2. Installation

CHAPTER 3

Quickstart

omniduct is designed to be intuitive and uniform in its APIs. As such, insofar as possible, all Duct subclasses have
a reasonable default configuration, making it possible to quickly create working connections to remote services. De-
pending on the complexity of your service configuration, it may or may not make sense to use omniduct’s registry
utilities, and so this quickstart will show you how to directly create Duct instances, as well as how to work with a Duct
registry. Though we only use PrestoClient explicitly in the following, since all Duct instances have the same basic
API, the same methodology will work with all Duct subclasses.

If you are looking deploy omniduct into production or as part of a company specific package, or want to share your
service configuration with others, you will likely also be interested in Deployment.

3.1 Task 1: Create a Presto client that connects direct to the database
service

Method 1: Via PrestoClient class

>>> from omniduct.databases.presto import PrestoClient

>>> pc = PrestoClient(host="<host>", port=8080)

>>> pc.query("SELECT 42")
PrestoClient: Query: Complete after 0.14 sec on 2017-10-13.

_col0
0 42

>>> pc.register_magics('presto_local')

The following assumes that you are using an IPython/Jupyter console
>>> %%presto_local
... {# magics are created and queries rendered using Jinja2 templating #}
... SELECT {{ 4 * 10 + 2 }}
...

(continues on next page)

5

Omniduct Documentation, Release v1.1.19

(continued from previous page)

presto_local: Query: Complete after 1.20 sec on 2017-10-13.
_col0

0 42

Method 2: Via Duct subclass registry

>>> from omniduct import Duct

>>> pc = Duct.for_protocol('presto')(host='<host>', port=8080)

>>> pc.query("SELECT 42")
... And all of the rest from above.

Method 3: Via DuctRegistry

>>> from omniduct import DuctRegistry

>>> duct_registry = DuctRegistry()

>>> pc = duct_registry.new(name='presto_local', protocol='presto',
... host='localhost', port=8080, register_magics=True)

>>> # Or: pc = duct_registry['presto_local']

>>> # Or: pc = duct_registry.get_proxy(by_kind=True).databases.presto_local

>>> pc.query("SELECT 42")
presto_local: Query: Complete after 0.14 sec on 2017-10-13.

_col0
0 42

The following assumes that you are using an IPython/Jupyter console
>>> %%presto_local
... {# magics are created and queries rendered using Jinja2 templating #}
... SELECT {{ 4 * 10 + 2 }}
...
presto_local: Query: Complete after 1.20 sec on 2017-10-13.

_col0
0 42

3.2 Task 2: Create a Presto client that connects via ssh to a remote
server

Method 1: Directly passing ‘RemoteClient‘ instance to PrestoClient constructor

>>> from omniduct import Duct

>>> remote = Duct.for_protocol('ssh')(host='<remote_host>', port=22)

>>> pc = Duct.for_protocol('presto')(host='<host_relative_to_remote>',
port=8080, remote=remote)

>>> pc.query("SELECT 42") # Query sent to port-forwarded remote service

(continues on next page)

6 Chapter 3. Quickstart

Omniduct Documentation, Release v1.1.19

(continued from previous page)

PrestoClient: Query: Complete after 0.14 sec on 2017-10-13.
_col0

0 42

Method 2: Passing name of ‘RemoteClient‘ instance via Registry

>>> from omniduct import DuctRegistry

>>> duct_registry = DuctRegistry()

>>> duct_registry.new('my_server', protocol='ssh', host='<remote_host>', port=22)
<omniduct.remotes.ssh.SSHClient at 0x110bab550>

>>> duct_registry.new('presto_remote', protocol='presto', remote='my_server',
host='<host_relative_to_remote>', port=8080)

<omniduct.databases.presto.PrestoClient at 0x110c04a58>

Query sent to port-forwarded remote service

>>> %%presto_remote
... SELECT 42
...
presto_remote: Query: Connecting: Connected to localhost:8080 on <remote_host>.
presto_remote: Query: Complete after 7.30 sec on 2017-10-13.

_col0
0 42

3.3 Task 3: Persist service configuration for use in multiple sessions

Method 1: Manually import configuration into ‘DuctRegistry‘

>>> from omniduct import DuctRegistry

>>> duct_registry = DuctRegistry()

Specify a YAML configuration verbatim (or the filename of a yaml configuration)
In this case we create the configuration for the previous task.
>>> duct_registry.register_from_config("""
... remotes:
... my_server:
... protocol: ssh
... host: <remote_host>
... databases:
... presto_local:
... protocol: presto
... host: <host_relative_to_remote>
... port: 8080
... remote: my_server
... """)

>>> %%presto_local
... SELECT 42
...
And so on.

3.3. Task 3: Persist service configuration for use in multiple sessions 7

Omniduct Documentation, Release v1.1.19

Method 2: Save configuration to ‘~/.omniduct/config‘, and autoload

Assuming that the above YAML file has been saved to ~/.omniduct/config, or to a file located at the location pointed
to by the OMNIDUCT_CONFIG environment variable, you can directly restore your configuration by importing from
omniduct.session.

>>> from omniduct.session import *

>>> presto_local
<omniduct.databases.presto.PrestoClient at 0x110c04a58>

>>> %%presto_local
... SELECT 42

And so on.

8 Chapter 3. Quickstart

CHAPTER 4

Deployment

While Omniduct can be used on its own by manually constructing the services that you need as part of your scripts
and packages, it was designed specifically to integrate well into a organisation-specific Python wrapper package that
preconfigures the services available within that organisation environment. Typically such deployments would take
advantage of Omniduct’s DuctRegistry to conveniently expose services within such a package.

An example wrapper package is provided alongside the omniduct module to help bootstrap your own wrappers.

If you need any assistance, please do not hesitate to reach out to us via the GitHub issue tracker.

9

https://github.com/airbnb/omniduct/tree/master/example_wrapper
https://github.com/airbnb/omniduct/issues

Omniduct Documentation, Release v1.1.19

10 Chapter 4. Deployment

CHAPTER 5

API & IPython Magics

5.1 Core Classes

All protocol implementations are subclasses (directly or indirectly) of Duct. This base class manages the basic life-
cycle, connection management and protocol registration. When a subclass of Duct is loaded into memory, and has at
least one protocol name in the PROTOCOLS attribute, then Duct registers that class into its subclass registry. This class
can then be conveniently accessed by: Duct.for_protocol(‘<protocol_name>’). This empowers the accompanying
registry tooling bundled with omniduct, as documented in Registry Management.

Protocol implementations may also (directly or indirectly) be subclasses of MagicsProvider, which provides a com-
mon API to registry IPython magics into the user’s session. If implemented, the accompanying registry tooling can
automatically register these magics, as documented in Registry Management.

5.1.1 Duct

class omniduct.duct.Duct(protocol=None, name=None, registry=None, remote=None, host=None,
port=None, username=None, password=None, cache=None,
cache_namespace=None)

Bases: object

The abstract base class for all protocol implementations.

This class defines the basic lifecycle of service connections, along with some magic that provides automatic
registration of Duct protocol implementations. All connections made by Duct instances are lazy, meaning that
instantiation is “free”, and no protocol connections are made until required by subsequent interactions (i.e. when
the value of any attribute in the list of connection_fields is accessed). All Ducts will automatically connnect and
disconnect as required, and so manual intervention is not typically required to maintain connections.

Attributes

• protocol (str) – The name of the protocol for which this instance was created (especially
useful if a Duct subclass supports multiple protocols).

• name (str) – The name given to this Duct instance (defaults to class name).

11

Omniduct Documentation, Release v1.1.19

• host (str) – The host name providing the service (will be ‘127.0.0.1’, if service is port
forwarded from remote; use ._host to see remote host).

• port (int) – The port number of the service (will be the port-forwarded local port, if relevant;
for remote port use ._port).

• username (str, bool) – The username to use for the service.

• password (str, bool) – The password to use for the service.

• registry (None, omniduct.registry.DuctRegistry) – A reference to a DuctRegistry instance
for runtime lookup of other services.

• remote (None, omniduct.remotes.base.RemoteClient) – A reference to a RemoteClient in-
stance to manage connections to remote services.

• cache (None, omniduct.caches.base.Cache) – A reference to a Cache instance to add support
for caching, if applicable.

• connection_fields (tuple<str>, list<str>) – A list of instance attributes to monitor for
changes, whereupon the Duct instance should automatically disconnect. By default, the
following attributes are monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

• prepared_fields (tuple<str>, list<str>) – A list of instance attributes to be populated (if
their values are callable) when the instance first connects to a service. Refer to Duct.prepare
and Duct._prepare for more details. By default, the following attributes are prepared:
‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Additional attributes including ‘host‘, ‘port‘, ‘username‘ and ‘password‘ are

• documented inline.

• Class Attributes –

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct
logging code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct in-
stance. Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated
with this class. Should be overridden by subclasses as appropriate.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(protocol=None, name=None, registry=None, remote=None, host=None, port=None, user-
name=None, password=None, cache=None, cache_namespace=None)

protocol (str, None): Name of protocol (used by Duct registries to inform Duct instances of how they
were instantiated).

name (str, None): The name to used by the Duct instance (defaults to class name if not specified).

registry (DuctRegistry, None): The registry to use to lookup remote and/or cache instance specified
by name.

remote (str, RemoteClient): The remote by which the ducted service should be contacted.

host (str): The hostname of the service to be used by this client. port (int): The port of the service to be
used by this client. username (str, bool, None): The username to authenticate with if necessary.

If True, then users will be prompted at runtime for credentials.

12 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

password (str, bool, None): The password to authenticate with if necessary. If True, then users will
be prompted at runtime for credentials.

cache(Cache, None): The cache client to be attached to this instance. Cache will only used by spe-
cific methods as configured by the client.

cache_namespace(str, None): The namespace to use by default when writing to the cache.

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

This method may be overridden by subclasses, but provides the following default behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding value is
callable, sets the value of that field to result of calling that value with a reference to self. By default,
prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

_prepare()
This method may be overridden by subclasses, but provides the following default behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding value is
callable, sets the value of that field to result of calling that value with a reference to self. By default,
prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

5.1. Core Classes 13

Omniduct Documentation, Release v1.1.19

Returns A reference to this object.

Return type Duct instance

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

14 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Return type Duct instance

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

5.1.2 MagicsProvider

class omniduct.utils.magics.MagicsProvider
Bases: object

5.2 Databases

All database clients are expected to be subclasses of DatabaseClient, and so will share a common API and inherit a
suite of IPython magics. Protocol implementations are also free to add extra methods, which are documented in the
“Subclass Reference” section below.

5.2.1 Common API

class omniduct.databases.base.DatabaseClient(session_properties=None, tem-
plates=None, template_context=None,
default_format_opts=None, **kwargs)

Bases: omniduct.duct.Duct, omniduct.utils.magics.MagicsProvider

An abstract class providing the common API for all database clients.

Note: DatabaseClient subclasses are callable, so that one can use DatabaseClient(. . .) as a short-hand for
DatabaseClient.query(. . .).

Class Attributes

• DUCT_TYPE (Duct.Type) – The type of Duct protocol implemented by this class.

• DEFAULT_PORT (int) – The default port for the database service (defined by subclasses).

• CURSOR_FORMATTERS (dict<str, CursorFormatter) – asdsd

• DEFAULT_CURSOR_FORMATTER (str) – . . .

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

5.2. Databases 15

Omniduct Documentation, Release v1.1.19

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

NAMESPACE_DEFAULTS_READ
Backwards compatible shim for NAMESPACE_DEFAULTS.

NAMESPACE_DEFAULTS_WRITE
Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

__init__(session_properties=None, templates=None, template_context=None, de-
fault_format_opts=None, **kwargs)

session_properties (dict): A mapping of default session properties to values. Interpretation is left up
to implementations.

templates (dict): A dictionary of name to template mappings. Additional templates can be added us-
ing .template_add.

template_context (dict): The default template context to use when rendering templates.

default_format_opts (dict): The default formatting options passed to cursor formatter.

session_properties
The default session properties used in statement executions.

Type dict

classmethod statement_hash(statement, cleanup=True)
Retrieve the hash to use to identify query statements to the cache.

Parameters

• statement (str) – A string representation of the statement to be hashed.

• cleanup (bool) – Whether the statement should first be consistently reformatted using
statement_cleanup.

16 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Returns The hash used to identify a statement to the cache.

Return type str

classmethod statement_cleanup(statement)
Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently removing comments and replac-
ing all whitespace. It is used by the statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this method should be overloaded
appropriately.

Parameters statement (str) – The statement to be reformatted/cleaned-up.

Returns The new statement, consistently reformatted.

Return type str

execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)
Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used in future executions, by passing
it as the cursor keyword argument.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• wait (bool) – Whether the cursor should be returned before the server-side query com-
putation is complete and the relevant results downloaded.

• cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute the statement
against the provided cursor.

• session_properties (dict) – Additional session properties and/or overrides to use
for this query. Setting a session property value to None will cause it to be omitted.

• **kwargs (dict) – Extra keyword arguments to be passed on to _execute, as imple-
mented by subclasses.

• template (bool) – Whether the statement should be treated as a Jinja2 template. [Used
by render_statement decorator.]

• context (dict) – The context in which the template should be evaluated (a dictionary
of parameters to values). [Used by render_statement decorator.]

• use_cache (bool) – True or False (default). Whether to use the cache (if present).
[Used by cached_method decorator.]

• renew (bool) – True or False (default). If cache is being used, renew it before returning
stored value. [Used by cached_method decorator.]

• cleanup (bool) – Whether statement should be cleaned up before computing the hash
used to cache results. [Used by cached_method decorator.]

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

query(statement, format=None, format_opts={}, use_cache=True, **kwargs)
Execute a statement against this database and collect formatted data.

Parameters

5.2. Databases 17

Omniduct Documentation, Release v1.1.19

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• use_cache (bool) – Whether to cache the cursor returned by DatabaseClient.execute()
(overrides the default of False for .execute()). (default=True)

• **kwargs (dict) – Additional arguments to pass on to DatabaseClient.execute().

Returns The results of the query formatted as nominated.

stream(statement, format=None, format_opts={}, batch=None, **kwargs)
Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the result set. If batch is not None, then
the iterator will be over lists of length batch containing formatted rows.

Parameters

• statement (str) – The statement to be executed against the database.

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• batch (int) – If not None, the number of rows from the resulting cursor to be returned
at once.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client.execute.

Returns

An iterator over objects of the nominated format or, if batched, a list of such objects.

Return type iterator

stream_to_file(statement, file, format=’csv’, fs=None, **kwargs)
Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the iterative writing of cursor results
to a file. This is especially useful when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the default format for this method (rather
than pandas).

Parameters

• statement (str) – The statement to be executed against the database.

• file (str, file-like-object) – The filename where the data should be written,
or an open file-like resource.

• format (str) – The format to be used (‘csv’ by default). Format options can be passed
via **kwargs.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs – Additional keyword arguments to pass onto DatabaseClient.stream.

18 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

execute_from_file(file, fs=None, **kwargs)
Execute a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.execute.

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

query_from_file(file, fs=None, **kwargs)
Query using a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.query.

Returns The results of the query formatted as nominated.

Return type object

template_names
A list of names associated with the templates associated with this client.

Type list

template_add(name, body)
Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See .template_render for more information.

Parameters

• name (str) – The name of the template.

• body (str) – The (typically) multiline body of the template.

Returns A reference to this object.

Return type PrestoClient

template_get(name)
Retrieve a named template.

Parameters name (str) – The name of the template to retrieve.

Raises ValueError – If name is not associated with a template.

Returns The requested template.

Return type str

template_variables(name_or_statement, by_name=False)
Return the set of undeclared variables required for this template.

5.2. Databases 19

Omniduct Documentation, Release v1.1.19

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

Returns A set of names which the template requires to be rendered.

Return type set<str>

template_render(name_or_statement, context=None, by_name=False, cleanup=False,
meta_only=False)

Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail in the official jinja2 documentation, a
meta-templating extension is also provided. This meta-templating allows you to reference other reference
other templates. For example, if you had two SQL templates named ‘template_a’ and ‘template_b’, then
you could render them into one SQL query using (for example):

.template_render('''
WITH

a AS (
{{{template_a}}}

),
b AS (

{{{template_b}}}
)

SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can chain template embedding, provided that
such embedding is not recursive.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• context (dict, None) – A dictionary to use as the template context. If not specified,
an empty dictionary is used.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

• cleanup (bool) – True if the rendered statement should be formatted, False (default)
otherwise

• meta_only (bool) – True if rendering should only progress as far as rendering nested
templates (i.e. don’t actually substitute in variables from the context); False (default)
otherwise.

Returns The rendered template.

Return type str

execute_from_template(name, context=None, **kwargs)
Render and then execute a named template.

Parameters

20 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• name (str) – The name of the template to be rendered and executed.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .execute().

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

query_from_template(name, context=None, **kwargs)
Render and then query using a named tempalte.

Parameters

• name (str) – The name of the template to be rendered and used to query the database.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .query().

Returns The results of the query formatted as nominated.

Return type object

query_to_table(statement, table, if_exists=’fail’, **kwargs)
Run a query and store the results in a table in this database.

Parameters

• statement – The statement to be executed.

• table (str) – The name of the table into which the dataframe should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._query_to_table.

Returns The cursor object associated with the execution.

Return type DB-API cursor

dataframe_to_table(df, table, if_exists=’fail’, **kwargs)
Upload a local pandas dataframe into a table in this database.

Parameters

• df (pandas.DataFrame) – The dataframe to upload into the database.

• table (str, ParsedNamespaces) – The name of the table into which the dataframe
should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._dataframe_to_table.

table_list(namespace=None, renew=True, **kwargs)
Return a list of table names in the data source as a DataFrame.

Parameters

• namespace (str) – The namespace in which to look for tables.

5.2. Databases 21

Omniduct Documentation, Release v1.1.19

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The names of schemas in this database.

Return type list<str>

table_exists(table, renew=True, **kwargs)
Check whether a table exists.

Parameters

• table (str) – The table for which to check.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns True if table exists, and False otherwise.

Return type bool

table_drop(table, **kwargs)
Remove a table from the database.

Parameters

• table (str) – The table to drop.

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The cursor associated with this execution.

Return type DB-API cursor

table_desc(table, renew=True, **kwargs)
Describe a table in the database.

Parameters

• table (str) – The table to describe.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A dataframe description of the table.

Return type pandas.DataFrame

table_partition_cols(table, renew=True, **kwargs)
Extract the columns by which a table is partitioned (if database supports partitions).

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A list of columns by which table is partitioned.

Return type list<str>

table_head(table, n=10, renew=True, **kwargs)
Retrieve the first n rows from a table.

Parameters

22 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• table (str) – The table from which to extract data.

• n (int) – The number of rows to extract.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the first n rows of the nominated table.

Return type pandas.DataFrame

table_props(table, renew=True, **kwargs)
Retrieve the properties associated with a table.

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the table properties.

Return type pandas.DataFrame

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

prepare()
Prepare a Duct subclass for use (if not already prepared).

5.2. Databases 23

Omniduct Documentation, Release v1.1.19

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

DatabaseClient Quirks: This method may be overridden by subclasses, but provides the following de-
fault behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

register_magics(base_name=None)
The following magic functions will be registered (assuming that the base name is chosen to be ‘hive’): -
Cell Magics:

• %%hive: For querying the database.

• %%hive.execute: For executing a statement against the database.

• %%hive.stream: For executing a statement against the database, and streaming the results.

• %%hive.template: The defining a new template.

• %%hive.render: Render a provided query statement.

• Line Magics:

– %hive: For querying the database using a named template.

– %hive.execute: For executing a named template statement against the database.

– %hive.stream: For executing a named template against the database, and streaming the
results.

– %hive.render: Render a provided a named template.

– %hive.desc: Describe the table nominated.

– %hive.head: Return the first rows in a specified table.

– %hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

5.2.2 IPython Magics

While it is possible in an IPython/Jupter notebook session to write code along the lines of:

results = db_client.query("""
SELECT *
FROM table
WHERE condition = 1
""", format='pandas', ...)

24 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

manually encapsulating queries in quotes quickly becomes tiresome and cluttered. We therefore expose most function-
ality as IPython magic functions. For example, the above code could instad be rendered (assuming magic functions
have been registered under the name db_client):

%%db_client results format='pandas' ...
SELECT *
FROM table
WHERE condition = 1

Especially when combined with templating, this can greatly improve the readability of your code.

In the following, all of the provided magic functions are listed along with the equivalent programmatic code. Note
that all arguments are passed in as space-separated tokens after the magic’s name. Position-arguments are always
interpreted as strings and keyword arguments are expected to be provided in the form ‘<key>=<value>’, where the
<value> will be run as Python code and the resulting value passed on to the underlying function/method as:

db_client.method(..., key=eval('<value>'), ...)

Where present in the following, arguments in square brackets after the magic name are the options specific to the magic
function, and an ellipsis (’. . . ’) indicates that any additional keyword arguments will be passed on to the appropriate
method.

Querying

%%<name> [variable=None show='head' transpose=False ...]
SELECT *
FROM table
WHERE condition = 1

This magic is equivalent to calling db_client.query("<sql>", ...), with the following magic-specific pa-
rameters offering additional flexibility:

• variable (str): The name of the local variable where the output should be stored (typically not referenced
directly by name)

• show (str, int, None): What should be shown if variable is specified (if not the entire output is returned). Al-
lowed values are ‘all’, ‘head’ (first 5 rows), ‘none’, or an integer which specifies the number of rows to be
shown.

• transpose (bool): If format is pandas, whether the shown results, as defined above, should be transposed. Data
stored into variable is never transposed.

There is also a line-magic version if you are querying using an existing template:

results = %<name> variable='<template_name>' ...

which is equivalent to db_client.query_from_template('<template_name>',
context=locals()). Note that one would typically pass this the template name as a position argument,
i.e. %<name> <template_name>.

Executing

%%<name>.execute [variable=None ...]
INSERT INTO database.table (field1, field2) VALUES (1, 2);

5.2. Databases 25

Omniduct Documentation, Release v1.1.19

This magic is equivalent to db_client.execute('<sql>', ...), with the variable argument functioning as
previously for the query magic.

As for the query magic, there is also a template version:

Streaming

%%<name>.stream [variable=None ...]
SELECT *
FROM table
WHERE condition = 1

This magic is equivalent to db_client.stream('<sql>', ...), with the variable argument functioning as
previously for the query magic. Keep in mind that the value returned from this method is a generator object.

As for the query magic, there is also a template version:

Templating

To create a new template:

%%<name>.template <template_name>
SELECT *
FROM table
WHERE condition = 1

which is equivalent to db_client.add_template("<template_name>", "<sql>").

You can render a template in the cell body using current context (or specified context):

%%<name>.render [context=None, show=True]
SELECT 1 FROM test

or if the template has already been created, you can render it directly by name:

%<name>.render [name=None, context=None, show=True]

In both cases, the context and show parameters respectively control the context from which template variables are
extracted and whether the rendered template should be shown (printed to screen) or returned as a string.

Table properties

todo Resolve what to keep and dump here.

%%<name>.desc
SELECT 1 FROM test

%%<name>.head
SELECT 1 FROM test

%%<name>.props

26 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

5.2.3 Subclass Reference

For comprehensive documentation on any particular subclass, please refer to one of the below documents.

DruidClient

class omniduct.databases.druid.DruidClient(session_properties=None, tem-
plates=None, template_context=None,
default_format_opts=None, **kwargs)

Bases: omniduct.databases.base.DatabaseClient

This Duct connects to a Druid server using the pydruid python library.

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

NAMESPACE_DEFAULTS_READ
Backwards compatible shim for NAMESPACE_DEFAULTS.

5.2. Databases 27

Omniduct Documentation, Release v1.1.19

NAMESPACE_DEFAULTS_WRITE
Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(session_properties=None, templates=None, template_context=None, de-
fault_format_opts=None, **kwargs)

session_properties (dict): A mapping of default session properties to values. Interpretation is left up
to implementations.

templates (dict): A dictionary of name to template mappings. Additional templates can be added us-
ing .template_add.

template_context (dict): The default template context to use when rendering templates.

default_format_opts (dict): The default formatting options passed to cursor formatter.

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

dataframe_to_table(df, table, if_exists=’fail’, **kwargs)
Upload a local pandas dataframe into a table in this database.

Parameters

• df (pandas.DataFrame) – The dataframe to upload into the database.

• table (str, ParsedNamespaces) – The name of the table into which the dataframe
should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._dataframe_to_table.

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)
Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used in future executions, by passing
it as the cursor keyword argument.

28 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• wait (bool) – Whether the cursor should be returned before the server-side query com-
putation is complete and the relevant results downloaded.

• cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute the statement
against the provided cursor.

• session_properties (dict) – Additional session properties and/or overrides to use
for this query. Setting a session property value to None will cause it to be omitted.

• **kwargs (dict) – Extra keyword arguments to be passed on to _execute, as imple-
mented by subclasses.

• template (bool) – Whether the statement should be treated as a Jinja2 template. [Used
by render_statement decorator.]

• context (dict) – The context in which the template should be evaluated (a dictionary
of parameters to values). [Used by render_statement decorator.]

• use_cache (bool) – True or False (default). Whether to use the cache (if present).
[Used by cached_method decorator.]

• renew (bool) – True or False (default). If cache is being used, renew it before returning
stored value. [Used by cached_method decorator.]

• cleanup (bool) – Whether statement should be cleaned up before computing the hash
used to cache results. [Used by cached_method decorator.]

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

execute_from_file(file, fs=None, **kwargs)
Execute a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.execute.

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

execute_from_template(name, context=None, **kwargs)
Render and then execute a named template.

Parameters

• name (str) – The name of the template to be rendered and executed.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .execute().

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

5.2. Databases 29

Omniduct Documentation, Release v1.1.19

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

DruidClient Quirks: This method may be overridden by subclasses, but provides the following default
behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

30 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

query(statement, format=None, format_opts={}, use_cache=True, **kwargs)
Execute a statement against this database and collect formatted data.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• use_cache (bool) – Whether to cache the cursor returned by DatabaseClient.execute()
(overrides the default of False for .execute()). (default=True)

• **kwargs (dict) – Additional arguments to pass on to DatabaseClient.execute().

Returns The results of the query formatted as nominated.

query_from_file(file, fs=None, **kwargs)
Query using a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.query.

Returns The results of the query formatted as nominated.

Return type object

query_from_template(name, context=None, **kwargs)
Render and then query using a named tempalte.

Parameters

• name (str) – The name of the template to be rendered and used to query the database.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .query().

Returns The results of the query formatted as nominated.

Return type object

query_to_table(statement, table, if_exists=’fail’, **kwargs)
Run a query and store the results in a table in this database.

Parameters

• statement – The statement to be executed.

• table (str) – The name of the table into which the dataframe should be uploaded.

5.2. Databases 31

Omniduct Documentation, Release v1.1.19

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._query_to_table.

Returns The cursor object associated with the execution.

Return type DB-API cursor

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

register_magics(base_name=None)
The following magic functions will be registered (assuming that the base name is chosen to be ‘hive’): -
Cell Magics:

• %%hive: For querying the database.

• %%hive.execute: For executing a statement against the database.

• %%hive.stream: For executing a statement against the database, and streaming the results.

• %%hive.template: The defining a new template.

• %%hive.render: Render a provided query statement.

• Line Magics:

– %hive: For querying the database using a named template.

– %hive.execute: For executing a named template statement against the database.

– %hive.stream: For executing a named template against the database, and streaming the
results.

– %hive.render: Render a provided a named template.

– %hive.desc: Describe the table nominated.

– %hive.head: Return the first rows in a specified table.

– %hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

session_properties
The default session properties used in statement executions.

Type dict

32 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

classmethod statement_cleanup(statement)
Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently removing comments and replac-
ing all whitespace. It is used by the statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this method should be overloaded
appropriately.

Parameters statement (str) – The statement to be reformatted/cleaned-up.

Returns The new statement, consistently reformatted.

Return type str

classmethod statement_hash(statement, cleanup=True)
Retrieve the hash to use to identify query statements to the cache.

Parameters

• statement (str) – A string representation of the statement to be hashed.

• cleanup (bool) – Whether the statement should first be consistently reformatted using
statement_cleanup.

Returns The hash used to identify a statement to the cache.

Return type str

stream(statement, format=None, format_opts={}, batch=None, **kwargs)
Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the result set. If batch is not None, then
the iterator will be over lists of length batch containing formatted rows.

Parameters

• statement (str) – The statement to be executed against the database.

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• batch (int) – If not None, the number of rows from the resulting cursor to be returned
at once.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client.execute.

Returns

An iterator over objects of the nominated format or, if batched, a list of such objects.

Return type iterator

stream_to_file(statement, file, format=’csv’, fs=None, **kwargs)
Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the iterative writing of cursor results
to a file. This is especially useful when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the default format for this method (rather
than pandas).

Parameters

• statement (str) – The statement to be executed against the database.

5.2. Databases 33

Omniduct Documentation, Release v1.1.19

• file (str, file-like-object) – The filename where the data should be written,
or an open file-like resource.

• format (str) – The format to be used (‘csv’ by default). Format options can be passed
via **kwargs.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs – Additional keyword arguments to pass onto DatabaseClient.stream.

table_desc(table, renew=True, **kwargs)
Describe a table in the database.

Parameters

• table (str) – The table to describe.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A dataframe description of the table.

Return type pandas.DataFrame

table_drop(table, **kwargs)
Remove a table from the database.

Parameters

• table (str) – The table to drop.

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The cursor associated with this execution.

Return type DB-API cursor

table_exists(table, renew=True, **kwargs)
Check whether a table exists.

Parameters

• table (str) – The table for which to check.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns True if table exists, and False otherwise.

Return type bool

table_head(table, n=10, renew=True, **kwargs)
Retrieve the first n rows from a table.

Parameters

• table (str) – The table from which to extract data.

• n (int) – The number of rows to extract.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

34 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

A dataframe representation of the first n rows of the nominated table.

Return type pandas.DataFrame

table_list(namespace=None, renew=True, **kwargs)
Return a list of table names in the data source as a DataFrame.

Parameters

• namespace (str) – The namespace in which to look for tables.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The names of schemas in this database.

Return type list<str>

table_partition_cols(table, renew=True, **kwargs)
Extract the columns by which a table is partitioned (if database supports partitions).

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A list of columns by which table is partitioned.

Return type list<str>

table_props(table, renew=True, **kwargs)
Retrieve the properties associated with a table.

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the table properties.

Return type pandas.DataFrame

template_add(name, body)
Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See .template_render for more information.

Parameters

• name (str) – The name of the template.

• body (str) – The (typically) multiline body of the template.

Returns A reference to this object.

Return type PrestoClient

template_get(name)
Retrieve a named template.

Parameters name (str) – The name of the template to retrieve.

5.2. Databases 35

Omniduct Documentation, Release v1.1.19

Raises ValueError – If name is not associated with a template.

Returns The requested template.

Return type str

template_names
A list of names associated with the templates associated with this client.

Type list

template_render(name_or_statement, context=None, by_name=False, cleanup=False,
meta_only=False)

Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail in the official jinja2 documentation, a
meta-templating extension is also provided. This meta-templating allows you to reference other reference
other templates. For example, if you had two SQL templates named ‘template_a’ and ‘template_b’, then
you could render them into one SQL query using (for example):

.template_render('''
WITH

a AS (
{{{template_a}}}

),
b AS (

{{{template_b}}}
)

SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can chain template embedding, provided that
such embedding is not recursive.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• context (dict, None) – A dictionary to use as the template context. If not specified,
an empty dictionary is used.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

• cleanup (bool) – True if the rendered statement should be formatted, False (default)
otherwise

• meta_only (bool) – True if rendering should only progress as far as rendering nested
templates (i.e. don’t actually substitute in variables from the context); False (default)
otherwise.

Returns The rendered template.

Return type str

template_variables(name_or_statement, by_name=False)
Return the set of undeclared variables required for this template.

Parameters

36 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

Returns A set of names which the template requires to be rendered.

Return type set<str>

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

HiveServer2Client

class omniduct.databases.hiveserver2.HiveServer2Client(session_properties=None,
templates=None, tem-
plate_context=None, de-
fault_format_opts=None,
**kwargs)

Bases: omniduct.databases.base.DatabaseClient, omniduct.databases._schemas.
SchemasMixin

This Duct connects to an Apache HiveServer2 server instance using the pyhive or impyla libraries.

Attributes

• schema (str, None) – The default schema to use for queries (will default to server-default if
not specified).

• driver (str) – One of ‘pyhive’ (default) or ‘impyla’, which specifies how the client commu-
nicates with Hive.

• auth_mechanism (str) – The authorisation protocol to use for connections. Defaults to
‘NOSASL’. Authorisation methods differ between drivers. Please refer to pyhive and impyla
documentation for more details.

• push_using_hive_cli (bool) – Whether the .push() operation should directly add files using
LOAD DATA LOCAL INPATH rather than the INSERT operation via SQLAlchemy. Note
that this requires the presence of the hive executable on the local PATH, or if connecting via
a RemoteClient instance, on the remote’s PATH. This is mostly useful for older versions of
Hive which do not support the INSERT statement.

• default_table_props (dict) – A dictionary of table properties to use by default when creat-
ing tables.

• connection_options (dict) – Additional options to pass through to the .connect() methods
of the drivers.

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

5.2. Databases 37

Omniduct Documentation, Release v1.1.19

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

NAMESPACE_DEFAULTS_READ
Backwards compatible shim for NAMESPACE_DEFAULTS.

NAMESPACE_DEFAULTS_WRITE
Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(session_properties=None, templates=None, template_context=None, de-
fault_format_opts=None, **kwargs)

session_properties (dict): A mapping of default session properties to values. Interpretation is left up
to implementations.

templates (dict): A dictionary of name to template mappings. Additional templates can be added us-
ing .template_add.

template_context (dict): The default template context to use when rendering templates.

default_format_opts (dict): The default formatting options passed to cursor formatter.

38 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

dataframe_to_table(df, table, if_exists=’fail’, **kwargs)
Upload a local pandas dataframe into a table in this database.

Parameters

• df (pandas.DataFrame) – The dataframe to upload into the database.

• table (str, ParsedNamespaces) – The name of the table into which the dataframe
should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._dataframe_to_table.

HiveServer2Client Quirks: If use_hive_cli (or if not specified .push_using_hive_cli) is True, a CREATE
TABLE statement will be automatically generated based on the datatypes of the DataFrame (unless
overwritten by dtype_overrides). The DataFrame will then be exported to a CSV compatible with
Hive and uploaded (if necessary) to the remote, before being loaded into Hive using a LOAD DATA
LOCAL INFILE . . . query using the hive cli executable. Note that if a table is not partitioned, you
cannot convert it to a parititioned table without deleting it first.

If use_hive_cli (or if not specified .push_using_hive_cli) is False, an attempt will be made to push
the DataFrame to Hive using pandas.DataFrame.to_sql and the SQLAlchemy binding provided by
pyhive and impyla. This may be slower, does not support older versions of Hive, and does not support
table properties or partitioning.

If if the schema namespace is not specified, table.schema will be defaulted to your username.

Additional Args:

use_hive_cli (bool, None): A local override for the global .push_using_hive_cli attribute. If
not specified, the global default is used. If True, then pushes are performed using the hive
CLI executable on the local/remote PATH.

**kwargs (dict): Additional arguments to send to pandas.DataFrame.to_sql.

Further Parameters for CLI method (specifying these for the pandas method will cause a RuntimeError
exception):

partition (dict): A mapping of column names to values that specify the partition into
which the provided data should be uploaded, as well as providing the fields by which new
tables should be partitioned.

sep (str): Field delimiter for data (defaults to CTRL-A, or chr(1)). table_props (dict): Prop-
erties to set on any newly created tables

(extends .default_table_props).

dtype_overrides (dict): Mapping of column names to Hive datatypes to use instead of
default mapping.

5.2. Databases 39

Omniduct Documentation, Release v1.1.19

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)
Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used in future executions, by passing
it as the cursor keyword argument.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• wait (bool) – Whether the cursor should be returned before the server-side query com-
putation is complete and the relevant results downloaded.

• cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute the statement
against the provided cursor.

• session_properties (dict) – Additional session properties and/or overrides to use
for this query. Setting a session property value to None will cause it to be omitted.

• **kwargs (dict) – Extra keyword arguments to be passed on to _execute, as imple-
mented by subclasses.

• template (bool) – Whether the statement should be treated as a Jinja2 template. [Used
by render_statement decorator.]

• context (dict) – The context in which the template should be evaluated (a dictionary
of parameters to values). [Used by render_statement decorator.]

• use_cache (bool) – True or False (default). Whether to use the cache (if present).
[Used by cached_method decorator.]

• renew (bool) – True or False (default). If cache is being used, renew it before returning
stored value. [Used by cached_method decorator.]

• cleanup (bool) – Whether statement should be cleaned up before computing the hash
used to cache results. [Used by cached_method decorator.]

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

HiveServer2Client Quirks:

Additional Args:

poll_interval (int): Default delay in seconds between consecutive query status (defaults to 1).

execute_from_file(file, fs=None, **kwargs)
Execute a statement stored in a file.

Parameters

40 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.execute.

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

execute_from_template(name, context=None, **kwargs)
Render and then execute a named template.

Parameters

• name (str) – The name of the template to be rendered and executed.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .execute().

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

5.2. Databases 41

Omniduct Documentation, Release v1.1.19

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

HiveServer2Client Quirks: This method may be overridden by subclasses, but provides the following
default behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

query(statement, format=None, format_opts={}, use_cache=True, **kwargs)
Execute a statement against this database and collect formatted data.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• use_cache (bool) – Whether to cache the cursor returned by DatabaseClient.execute()
(overrides the default of False for .execute()). (default=True)

• **kwargs (dict) – Additional arguments to pass on to DatabaseClient.execute().

Returns The results of the query formatted as nominated.

query_from_file(file, fs=None, **kwargs)
Query using a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.query.

Returns The results of the query formatted as nominated.

42 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Return type object

query_from_template(name, context=None, **kwargs)
Render and then query using a named tempalte.

Parameters

• name (str) – The name of the template to be rendered and used to query the database.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .query().

Returns The results of the query formatted as nominated.

Return type object

query_to_table(statement, table, if_exists=’fail’, **kwargs)
Run a query and store the results in a table in this database.

Parameters

• statement – The statement to be executed.

• table (str) – The name of the table into which the dataframe should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._query_to_table.

Returns The cursor object associated with the execution.

Return type DB-API cursor

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

register_magics(base_name=None)
The following magic functions will be registered (assuming that the base name is chosen to be ‘hive’): -
Cell Magics:

• %%hive: For querying the database.

• %%hive.execute: For executing a statement against the database.

• %%hive.stream: For executing a statement against the database, and streaming the results.

• %%hive.template: The defining a new template.

• %%hive.render: Render a provided query statement.

• Line Magics:

– %hive: For querying the database using a named template.

– %hive.execute: For executing a named template statement against the database.

– %hive.stream: For executing a named template against the database, and streaming the
results.

5.2. Databases 43

Omniduct Documentation, Release v1.1.19

– %hive.render: Render a provided a named template.

– %hive.desc: Describe the table nominated.

– %hive.head: Return the first rows in a specified table.

– %hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

schemas
An object with attributes corresponding to the names of the schemas in this database.

Type object

session_properties
The default session properties used in statement executions.

Type dict

classmethod statement_cleanup(statement)
Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently removing comments and replac-
ing all whitespace. It is used by the statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this method should be overloaded
appropriately.

Parameters statement (str) – The statement to be reformatted/cleaned-up.

Returns The new statement, consistently reformatted.

Return type str

classmethod statement_hash(statement, cleanup=True)
Retrieve the hash to use to identify query statements to the cache.

Parameters

• statement (str) – A string representation of the statement to be hashed.

• cleanup (bool) – Whether the statement should first be consistently reformatted using
statement_cleanup.

Returns The hash used to identify a statement to the cache.

Return type str

stream(statement, format=None, format_opts={}, batch=None, **kwargs)
Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the result set. If batch is not None, then
the iterator will be over lists of length batch containing formatted rows.

Parameters

• statement (str) – The statement to be executed against the database.

44 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• batch (int) – If not None, the number of rows from the resulting cursor to be returned
at once.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client.execute.

Returns

An iterator over objects of the nominated format or, if batched, a list of such objects.

Return type iterator

stream_to_file(statement, file, format=’csv’, fs=None, **kwargs)
Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the iterative writing of cursor results
to a file. This is especially useful when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the default format for this method (rather
than pandas).

Parameters

• statement (str) – The statement to be executed against the database.

• file (str, file-like-object) – The filename where the data should be written,
or an open file-like resource.

• format (str) – The format to be used (‘csv’ by default). Format options can be passed
via **kwargs.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs – Additional keyword arguments to pass onto DatabaseClient.stream.

table_desc(table, renew=True, **kwargs)
Describe a table in the database.

Parameters

• table (str) – The table to describe.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A dataframe description of the table.

Return type pandas.DataFrame

table_drop(table, **kwargs)
Remove a table from the database.

Parameters

• table (str) – The table to drop.

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The cursor associated with this execution.

Return type DB-API cursor

5.2. Databases 45

Omniduct Documentation, Release v1.1.19

table_exists(table, renew=True, **kwargs)
Check whether a table exists.

Parameters

• table (str) – The table for which to check.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns True if table exists, and False otherwise.

Return type bool

table_head(table, n=10, renew=True, **kwargs)
Retrieve the first n rows from a table.

Parameters

• table (str) – The table from which to extract data.

• n (int) – The number of rows to extract.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the first n rows of the nominated table.

Return type pandas.DataFrame

table_list(namespace=None, renew=True, **kwargs)
Return a list of table names in the data source as a DataFrame.

Parameters

• namespace (str) – The namespace in which to look for tables.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The names of schemas in this database.

Return type list<str>

table_partition_cols(table, renew=True, **kwargs)
Extract the columns by which a table is partitioned (if database supports partitions).

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A list of columns by which table is partitioned.

Return type list<str>

table_props(table, renew=True, **kwargs)
Retrieve the properties associated with a table.

Parameters

• table (str) – The table from which to extract data.

46 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the table properties.

Return type pandas.DataFrame

template_add(name, body)
Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See .template_render for more information.

Parameters

• name (str) – The name of the template.

• body (str) – The (typically) multiline body of the template.

Returns A reference to this object.

Return type PrestoClient

template_get(name)
Retrieve a named template.

Parameters name (str) – The name of the template to retrieve.

Raises ValueError – If name is not associated with a template.

Returns The requested template.

Return type str

template_names
A list of names associated with the templates associated with this client.

Type list

template_render(name_or_statement, context=None, by_name=False, cleanup=False,
meta_only=False)

Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail in the official jinja2 documentation, a
meta-templating extension is also provided. This meta-templating allows you to reference other reference
other templates. For example, if you had two SQL templates named ‘template_a’ and ‘template_b’, then
you could render them into one SQL query using (for example):

.template_render('''
WITH

a AS (
{{{template_a}}}

),
b AS (

{{{template_b}}}
)

SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can chain template embedding, provided that
such embedding is not recursive.

5.2. Databases 47

Omniduct Documentation, Release v1.1.19

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• context (dict, None) – A dictionary to use as the template context. If not specified,
an empty dictionary is used.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

• cleanup (bool) – True if the rendered statement should be formatted, False (default)
otherwise

• meta_only (bool) – True if rendering should only progress as far as rendering nested
templates (i.e. don’t actually substitute in variables from the context); False (default)
otherwise.

Returns The rendered template.

Return type str

template_variables(name_or_statement, by_name=False)
Return the set of undeclared variables required for this template.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

Returns A set of names which the template requires to be rendered.

Return type set<str>

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

Neo4jClient

class omniduct.databases.neo4j.Neo4jClient(session_properties=None, tem-
plates=None, template_context=None,
default_format_opts=None, **kwargs)

Bases: omniduct.databases.base.DatabaseClient

This Duct connects to a Neo4j graph database server using the neo4j python library.

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

48 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

NAMESPACE_DEFAULTS_READ
Backwards compatible shim for NAMESPACE_DEFAULTS.

NAMESPACE_DEFAULTS_WRITE
Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(session_properties=None, templates=None, template_context=None, de-
fault_format_opts=None, **kwargs)

session_properties (dict): A mapping of default session properties to values. Interpretation is left up
to implementations.

templates (dict): A dictionary of name to template mappings. Additional templates can be added us-
ing .template_add.

template_context (dict): The default template context to use when rendering templates.

default_format_opts (dict): The default formatting options passed to cursor formatter.

5.2. Databases 49

Omniduct Documentation, Release v1.1.19

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

dataframe_to_table(df, table, if_exists=’fail’, **kwargs)
Upload a local pandas dataframe into a table in this database.

Parameters

• df (pandas.DataFrame) – The dataframe to upload into the database.

• table (str, ParsedNamespaces) – The name of the table into which the dataframe
should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._dataframe_to_table.

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)
Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used in future executions, by passing
it as the cursor keyword argument.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• wait (bool) – Whether the cursor should be returned before the server-side query com-
putation is complete and the relevant results downloaded.

• cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute the statement
against the provided cursor.

• session_properties (dict) – Additional session properties and/or overrides to use
for this query. Setting a session property value to None will cause it to be omitted.

• **kwargs (dict) – Extra keyword arguments to be passed on to _execute, as imple-
mented by subclasses.

• template (bool) – Whether the statement should be treated as a Jinja2 template. [Used
by render_statement decorator.]

50 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• context (dict) – The context in which the template should be evaluated (a dictionary
of parameters to values). [Used by render_statement decorator.]

• use_cache (bool) – True or False (default). Whether to use the cache (if present).
[Used by cached_method decorator.]

• renew (bool) – True or False (default). If cache is being used, renew it before returning
stored value. [Used by cached_method decorator.]

• cleanup (bool) – Whether statement should be cleaned up before computing the hash
used to cache results. [Used by cached_method decorator.]

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

execute_from_file(file, fs=None, **kwargs)
Execute a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.execute.

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

execute_from_template(name, context=None, **kwargs)
Render and then execute a named template.

Parameters

• name (str) – The name of the template to be rendered and executed.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .execute().

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

5.2. Databases 51

Omniduct Documentation, Release v1.1.19

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

Neo4jClient Quirks: This method may be overridden by subclasses, but provides the following default
behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

query(statement, format=None, format_opts={}, use_cache=True, **kwargs)
Execute a statement against this database and collect formatted data.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

52 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• use_cache (bool) – Whether to cache the cursor returned by DatabaseClient.execute()
(overrides the default of False for .execute()). (default=True)

• **kwargs (dict) – Additional arguments to pass on to DatabaseClient.execute().

Returns The results of the query formatted as nominated.

query_from_file(file, fs=None, **kwargs)
Query using a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.query.

Returns The results of the query formatted as nominated.

Return type object

query_from_template(name, context=None, **kwargs)
Render and then query using a named tempalte.

Parameters

• name (str) – The name of the template to be rendered and used to query the database.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .query().

Returns The results of the query formatted as nominated.

Return type object

query_to_table(statement, table, if_exists=’fail’, **kwargs)
Run a query and store the results in a table in this database.

Parameters

• statement – The statement to be executed.

• table (str) – The name of the table into which the dataframe should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._query_to_table.

Returns The cursor object associated with the execution.

Return type DB-API cursor

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

5.2. Databases 53

Omniduct Documentation, Release v1.1.19

register_magics(base_name=None)
The following magic functions will be registered (assuming that the base name is chosen to be ‘hive’): -
Cell Magics:

• %%hive: For querying the database.

• %%hive.execute: For executing a statement against the database.

• %%hive.stream: For executing a statement against the database, and streaming the results.

• %%hive.template: The defining a new template.

• %%hive.render: Render a provided query statement.

• Line Magics:

– %hive: For querying the database using a named template.

– %hive.execute: For executing a named template statement against the database.

– %hive.stream: For executing a named template against the database, and streaming the
results.

– %hive.render: Render a provided a named template.

– %hive.desc: Describe the table nominated.

– %hive.head: Return the first rows in a specified table.

– %hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

session_properties
The default session properties used in statement executions.

Type dict

classmethod statement_cleanup(statement)
Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently removing comments and replac-
ing all whitespace. It is used by the statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this method should be overloaded
appropriately.

Parameters statement (str) – The statement to be reformatted/cleaned-up.

Returns The new statement, consistently reformatted.

Return type str

classmethod statement_hash(statement, cleanup=True)
Retrieve the hash to use to identify query statements to the cache.

Parameters

54 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• statement (str) – A string representation of the statement to be hashed.

• cleanup (bool) – Whether the statement should first be consistently reformatted using
statement_cleanup.

Returns The hash used to identify a statement to the cache.

Return type str

stream(statement, format=None, format_opts={}, batch=None, **kwargs)
Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the result set. If batch is not None, then
the iterator will be over lists of length batch containing formatted rows.

Parameters

• statement (str) – The statement to be executed against the database.

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• batch (int) – If not None, the number of rows from the resulting cursor to be returned
at once.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client.execute.

Returns

An iterator over objects of the nominated format or, if batched, a list of such objects.

Return type iterator

stream_to_file(statement, file, format=’csv’, fs=None, **kwargs)
Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the iterative writing of cursor results
to a file. This is especially useful when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the default format for this method (rather
than pandas).

Parameters

• statement (str) – The statement to be executed against the database.

• file (str, file-like-object) – The filename where the data should be written,
or an open file-like resource.

• format (str) – The format to be used (‘csv’ by default). Format options can be passed
via **kwargs.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs – Additional keyword arguments to pass onto DatabaseClient.stream.

table_desc(table, renew=True, **kwargs)
Describe a table in the database.

Parameters

• table (str) – The table to describe.

• renew (bool) – Whether to renew the results (default: True).

5.2. Databases 55

Omniduct Documentation, Release v1.1.19

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A dataframe description of the table.

Return type pandas.DataFrame

table_drop(table, **kwargs)
Remove a table from the database.

Parameters

• table (str) – The table to drop.

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The cursor associated with this execution.

Return type DB-API cursor

table_exists(table, renew=True, **kwargs)
Check whether a table exists.

Parameters

• table (str) – The table for which to check.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns True if table exists, and False otherwise.

Return type bool

table_head(table, n=10, renew=True, **kwargs)
Retrieve the first n rows from a table.

Parameters

• table (str) – The table from which to extract data.

• n (int) – The number of rows to extract.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the first n rows of the nominated table.

Return type pandas.DataFrame

table_list(namespace=None, renew=True, **kwargs)
Return a list of table names in the data source as a DataFrame.

Parameters

• namespace (str) – The namespace in which to look for tables.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The names of schemas in this database.

Return type list<str>

table_partition_cols(table, renew=True, **kwargs)
Extract the columns by which a table is partitioned (if database supports partitions).

56 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A list of columns by which table is partitioned.

Return type list<str>

table_props(table, renew=True, **kwargs)
Retrieve the properties associated with a table.

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the table properties.

Return type pandas.DataFrame

template_add(name, body)
Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See .template_render for more information.

Parameters

• name (str) – The name of the template.

• body (str) – The (typically) multiline body of the template.

Returns A reference to this object.

Return type PrestoClient

template_get(name)
Retrieve a named template.

Parameters name (str) – The name of the template to retrieve.

Raises ValueError – If name is not associated with a template.

Returns The requested template.

Return type str

template_names
A list of names associated with the templates associated with this client.

Type list

template_render(name_or_statement, context=None, by_name=False, cleanup=False,
meta_only=False)

Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail in the official jinja2 documentation, a
meta-templating extension is also provided. This meta-templating allows you to reference other reference
other templates. For example, if you had two SQL templates named ‘template_a’ and ‘template_b’, then
you could render them into one SQL query using (for example):

5.2. Databases 57

Omniduct Documentation, Release v1.1.19

.template_render('''
WITH

a AS (
{{{template_a}}}

),
b AS (

{{{template_b}}}
)

SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can chain template embedding, provided that
such embedding is not recursive.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• context (dict, None) – A dictionary to use as the template context. If not specified,
an empty dictionary is used.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

• cleanup (bool) – True if the rendered statement should be formatted, False (default)
otherwise

• meta_only (bool) – True if rendering should only progress as far as rendering nested
templates (i.e. don’t actually substitute in variables from the context); False (default)
otherwise.

Returns The rendered template.

Return type str

template_variables(name_or_statement, by_name=False)
Return the set of undeclared variables required for this template.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

Returns A set of names which the template requires to be rendered.

Return type set<str>

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

58 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

PrestoClient

class omniduct.databases.presto.PrestoClient(session_properties=None, tem-
plates=None, template_context=None,
default_format_opts=None, **kwargs)

Bases: omniduct.databases.base.DatabaseClient, omniduct.databases._schemas.
SchemasMixin

This Duct connects to a Facebook Presto server instance using the pyhive library.

In addition to the standard DatabaseClient API, PrestoClient adds a .schemas descriptor attribute, which enables
a tab completion driven exploration of a Presto database’s schemas and tables.

Attributes

• catalog (str) – The default catalog to use in database queries.

• schema (str) – The default schema/database to use in database queries.

• connection_options (dict) – Additional options to pass on to pyhive.presto.connect(. . .).

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

5.2. Databases 59

Omniduct Documentation, Release v1.1.19

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

NAMESPACE_DEFAULTS_READ
Backwards compatible shim for NAMESPACE_DEFAULTS.

NAMESPACE_DEFAULTS_WRITE
Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(session_properties=None, templates=None, template_context=None, de-
fault_format_opts=None, **kwargs)

session_properties (dict): A mapping of default session properties to values. Interpretation is left up
to implementations.

templates (dict): A dictionary of name to template mappings. Additional templates can be added us-
ing .template_add.

template_context (dict): The default template context to use when rendering templates.

default_format_opts (dict): The default formatting options passed to cursor formatter.

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

dataframe_to_table(df, table, if_exists=’fail’, **kwargs)
Upload a local pandas dataframe into a table in this database.

Parameters

• df (pandas.DataFrame) – The dataframe to upload into the database.

• table (str, ParsedNamespaces) – The name of the table into which the dataframe
should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._dataframe_to_table.

PrestoClient Quirks: If if the schema namespace is not specified, table.schema will be defaulted to your
username. Catalog overrides will be ignored, and will default to self.catalog.

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

60 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Returns A reference to this object.

Return type Duct instance

execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)
Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used in future executions, by passing
it as the cursor keyword argument.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• wait (bool) – Whether the cursor should be returned before the server-side query com-
putation is complete and the relevant results downloaded.

• cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute the statement
against the provided cursor.

• session_properties (dict) – Additional session properties and/or overrides to use
for this query. Setting a session property value to None will cause it to be omitted.

• **kwargs (dict) – Extra keyword arguments to be passed on to _execute, as imple-
mented by subclasses.

• template (bool) – Whether the statement should be treated as a Jinja2 template. [Used
by render_statement decorator.]

• context (dict) – The context in which the template should be evaluated (a dictionary
of parameters to values). [Used by render_statement decorator.]

• use_cache (bool) – True or False (default). Whether to use the cache (if present).
[Used by cached_method decorator.]

• renew (bool) – True or False (default). If cache is being used, renew it before returning
stored value. [Used by cached_method decorator.]

• cleanup (bool) – Whether statement should be cleaned up before computing the hash
used to cache results. [Used by cached_method decorator.]

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

PrestoClient Quirks: If something goes wrong, PrestoClient will attempt to parse the error log and
present the user with useful debugging information. If that fails, the full traceback will be raised
instead.

execute_from_file(file, fs=None, **kwargs)
Execute a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.execute.

Returns A DBAPI2 compatible cursor instance.

5.2. Databases 61

Omniduct Documentation, Release v1.1.19

Return type DBAPI2 cursor

execute_from_template(name, context=None, **kwargs)
Render and then execute a named template.

Parameters

• name (str) – The name of the template to be rendered and executed.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .execute().

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

62 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

PrestoClient Quirks: This method may be overridden by subclasses, but provides the following default
behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

query(statement, format=None, format_opts={}, use_cache=True, **kwargs)
Execute a statement against this database and collect formatted data.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• use_cache (bool) – Whether to cache the cursor returned by DatabaseClient.execute()
(overrides the default of False for .execute()). (default=True)

• **kwargs (dict) – Additional arguments to pass on to DatabaseClient.execute().

Returns The results of the query formatted as nominated.

query_from_file(file, fs=None, **kwargs)
Query using a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.query.

Returns The results of the query formatted as nominated.

Return type object

query_from_template(name, context=None, **kwargs)
Render and then query using a named tempalte.

Parameters

5.2. Databases 63

Omniduct Documentation, Release v1.1.19

• name (str) – The name of the template to be rendered and used to query the database.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .query().

Returns The results of the query formatted as nominated.

Return type object

query_to_table(statement, table, if_exists=’fail’, **kwargs)
Run a query and store the results in a table in this database.

Parameters

• statement – The statement to be executed.

• table (str) – The name of the table into which the dataframe should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._query_to_table.

Returns The cursor object associated with the execution.

Return type DB-API cursor

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

register_magics(base_name=None)
The following magic functions will be registered (assuming that the base name is chosen to be ‘hive’): -
Cell Magics:

• %%hive: For querying the database.

• %%hive.execute: For executing a statement against the database.

• %%hive.stream: For executing a statement against the database, and streaming the results.

• %%hive.template: The defining a new template.

• %%hive.render: Render a provided query statement.

• Line Magics:

– %hive: For querying the database using a named template.

– %hive.execute: For executing a named template statement against the database.

– %hive.stream: For executing a named template against the database, and streaming the
results.

– %hive.render: Render a provided a named template.

– %hive.desc: Describe the table nominated.

– %hive.head: Return the first rows in a specified table.

64 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

– %hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

schemas
An object with attributes corresponding to the names of the schemas in this database.

Type object

session_properties
The default session properties used in statement executions.

Type dict

classmethod statement_cleanup(statement)
Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently removing comments and replac-
ing all whitespace. It is used by the statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this method should be overloaded
appropriately.

Parameters statement (str) – The statement to be reformatted/cleaned-up.

Returns The new statement, consistently reformatted.

Return type str

classmethod statement_hash(statement, cleanup=True)
Retrieve the hash to use to identify query statements to the cache.

Parameters

• statement (str) – A string representation of the statement to be hashed.

• cleanup (bool) – Whether the statement should first be consistently reformatted using
statement_cleanup.

Returns The hash used to identify a statement to the cache.

Return type str

stream(statement, format=None, format_opts={}, batch=None, **kwargs)
Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the result set. If batch is not None, then
the iterator will be over lists of length batch containing formatted rows.

Parameters

• statement (str) – The statement to be executed against the database.

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

5.2. Databases 65

Omniduct Documentation, Release v1.1.19

• batch (int) – If not None, the number of rows from the resulting cursor to be returned
at once.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client.execute.

Returns

An iterator over objects of the nominated format or, if batched, a list of such objects.

Return type iterator

stream_to_file(statement, file, format=’csv’, fs=None, **kwargs)
Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the iterative writing of cursor results
to a file. This is especially useful when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the default format for this method (rather
than pandas).

Parameters

• statement (str) – The statement to be executed against the database.

• file (str, file-like-object) – The filename where the data should be written,
or an open file-like resource.

• format (str) – The format to be used (‘csv’ by default). Format options can be passed
via **kwargs.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs – Additional keyword arguments to pass onto DatabaseClient.stream.

table_desc(table, renew=True, **kwargs)
Describe a table in the database.

Parameters

• table (str) – The table to describe.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A dataframe description of the table.

Return type pandas.DataFrame

table_drop(table, **kwargs)
Remove a table from the database.

Parameters

• table (str) – The table to drop.

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The cursor associated with this execution.

Return type DB-API cursor

table_exists(table, renew=True, **kwargs)
Check whether a table exists.

Parameters

66 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• table (str) – The table for which to check.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns True if table exists, and False otherwise.

Return type bool

table_head(table, n=10, renew=True, **kwargs)
Retrieve the first n rows from a table.

Parameters

• table (str) – The table from which to extract data.

• n (int) – The number of rows to extract.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the first n rows of the nominated table.

Return type pandas.DataFrame

table_list(namespace=None, renew=True, **kwargs)
Return a list of table names in the data source as a DataFrame.

Parameters

• namespace (str) – The namespace in which to look for tables.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The names of schemas in this database.

Return type list<str>

table_partition_cols(table, renew=True, **kwargs)
Extract the columns by which a table is partitioned (if database supports partitions).

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A list of columns by which table is partitioned.

Return type list<str>

table_props(table, renew=True, **kwargs)
Retrieve the properties associated with a table.

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

5.2. Databases 67

Omniduct Documentation, Release v1.1.19

Returns

A dataframe representation of the table properties.

Return type pandas.DataFrame

template_add(name, body)
Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See .template_render for more information.

Parameters

• name (str) – The name of the template.

• body (str) – The (typically) multiline body of the template.

Returns A reference to this object.

Return type PrestoClient

template_get(name)
Retrieve a named template.

Parameters name (str) – The name of the template to retrieve.

Raises ValueError – If name is not associated with a template.

Returns The requested template.

Return type str

template_names
A list of names associated with the templates associated with this client.

Type list

template_render(name_or_statement, context=None, by_name=False, cleanup=False,
meta_only=False)

Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail in the official jinja2 documentation, a
meta-templating extension is also provided. This meta-templating allows you to reference other reference
other templates. For example, if you had two SQL templates named ‘template_a’ and ‘template_b’, then
you could render them into one SQL query using (for example):

.template_render('''
WITH

a AS (
{{{template_a}}}

),
b AS (

{{{template_b}}}
)

SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can chain template embedding, provided that
such embedding is not recursive.

Parameters

68 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• context (dict, None) – A dictionary to use as the template context. If not specified,
an empty dictionary is used.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

• cleanup (bool) – True if the rendered statement should be formatted, False (default)
otherwise

• meta_only (bool) – True if rendering should only progress as far as rendering nested
templates (i.e. don’t actually substitute in variables from the context); False (default)
otherwise.

Returns The rendered template.

Return type str

template_variables(name_or_statement, by_name=False)
Return the set of undeclared variables required for this template.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

Returns A set of names which the template requires to be rendered.

Return type set<str>

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

PySparkClient

class omniduct.databases.pyspark.PySparkClient(session_properties=None, tem-
plates=None, template_context=None,
default_format_opts=None, **kwargs)

Bases: omniduct.databases.base.DatabaseClient

This Duct connects to a local PySpark session using the pyspark library.

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

5.2. Databases 69

Omniduct Documentation, Release v1.1.19

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

NAMESPACE_DEFAULTS_READ
Backwards compatible shim for NAMESPACE_DEFAULTS.

NAMESPACE_DEFAULTS_WRITE
Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(session_properties=None, templates=None, template_context=None, de-
fault_format_opts=None, **kwargs)

session_properties (dict): A mapping of default session properties to values. Interpretation is left up
to implementations.

templates (dict): A dictionary of name to template mappings. Additional templates can be added us-
ing .template_add.

template_context (dict): The default template context to use when rendering templates.

default_format_opts (dict): The default formatting options passed to cursor formatter.

connect()
Connect to the service backing this client.

70 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

dataframe_to_table(df, table, if_exists=’fail’, **kwargs)
Upload a local pandas dataframe into a table in this database.

Parameters

• df (pandas.DataFrame) – The dataframe to upload into the database.

• table (str, ParsedNamespaces) – The name of the table into which the dataframe
should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._dataframe_to_table.

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)
Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used in future executions, by passing
it as the cursor keyword argument.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• wait (bool) – Whether the cursor should be returned before the server-side query com-
putation is complete and the relevant results downloaded.

• cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute the statement
against the provided cursor.

• session_properties (dict) – Additional session properties and/or overrides to use
for this query. Setting a session property value to None will cause it to be omitted.

• **kwargs (dict) – Extra keyword arguments to be passed on to _execute, as imple-
mented by subclasses.

• template (bool) – Whether the statement should be treated as a Jinja2 template. [Used
by render_statement decorator.]

• context (dict) – The context in which the template should be evaluated (a dictionary
of parameters to values). [Used by render_statement decorator.]

5.2. Databases 71

Omniduct Documentation, Release v1.1.19

• use_cache (bool) – True or False (default). Whether to use the cache (if present).
[Used by cached_method decorator.]

• renew (bool) – True or False (default). If cache is being used, renew it before returning
stored value. [Used by cached_method decorator.]

• cleanup (bool) – Whether statement should be cleaned up before computing the hash
used to cache results. [Used by cached_method decorator.]

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

execute_from_file(file, fs=None, **kwargs)
Execute a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.execute.

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

execute_from_template(name, context=None, **kwargs)
Render and then execute a named template.

Parameters

• name (str) – The name of the template to be rendered and executed.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .execute().

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

72 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

PySparkClient Quirks: This method may be overridden by subclasses, but provides the following default
behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

query(statement, format=None, format_opts={}, use_cache=True, **kwargs)
Execute a statement against this database and collect formatted data.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

5.2. Databases 73

Omniduct Documentation, Release v1.1.19

• use_cache (bool) – Whether to cache the cursor returned by DatabaseClient.execute()
(overrides the default of False for .execute()). (default=True)

• **kwargs (dict) – Additional arguments to pass on to DatabaseClient.execute().

Returns The results of the query formatted as nominated.

query_from_file(file, fs=None, **kwargs)
Query using a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.query.

Returns The results of the query formatted as nominated.

Return type object

query_from_template(name, context=None, **kwargs)
Render and then query using a named tempalte.

Parameters

• name (str) – The name of the template to be rendered and used to query the database.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .query().

Returns The results of the query formatted as nominated.

Return type object

query_to_table(statement, table, if_exists=’fail’, **kwargs)
Run a query and store the results in a table in this database.

Parameters

• statement – The statement to be executed.

• table (str) – The name of the table into which the dataframe should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._query_to_table.

Returns The cursor object associated with the execution.

Return type DB-API cursor

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

74 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

register_magics(base_name=None)
The following magic functions will be registered (assuming that the base name is chosen to be ‘hive’): -
Cell Magics:

• %%hive: For querying the database.

• %%hive.execute: For executing a statement against the database.

• %%hive.stream: For executing a statement against the database, and streaming the results.

• %%hive.template: The defining a new template.

• %%hive.render: Render a provided query statement.

• Line Magics:

– %hive: For querying the database using a named template.

– %hive.execute: For executing a named template statement against the database.

– %hive.stream: For executing a named template against the database, and streaming the
results.

– %hive.render: Render a provided a named template.

– %hive.desc: Describe the table nominated.

– %hive.head: Return the first rows in a specified table.

– %hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

session_properties
The default session properties used in statement executions.

Type dict

classmethod statement_cleanup(statement)
Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently removing comments and replac-
ing all whitespace. It is used by the statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this method should be overloaded
appropriately.

Parameters statement (str) – The statement to be reformatted/cleaned-up.

Returns The new statement, consistently reformatted.

Return type str

classmethod statement_hash(statement, cleanup=True)
Retrieve the hash to use to identify query statements to the cache.

Parameters

5.2. Databases 75

Omniduct Documentation, Release v1.1.19

• statement (str) – A string representation of the statement to be hashed.

• cleanup (bool) – Whether the statement should first be consistently reformatted using
statement_cleanup.

Returns The hash used to identify a statement to the cache.

Return type str

stream(statement, format=None, format_opts={}, batch=None, **kwargs)
Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the result set. If batch is not None, then
the iterator will be over lists of length batch containing formatted rows.

Parameters

• statement (str) – The statement to be executed against the database.

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• batch (int) – If not None, the number of rows from the resulting cursor to be returned
at once.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client.execute.

Returns

An iterator over objects of the nominated format or, if batched, a list of such objects.

Return type iterator

stream_to_file(statement, file, format=’csv’, fs=None, **kwargs)
Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the iterative writing of cursor results
to a file. This is especially useful when there are a very large number of results, and loading them all into
memory would require considerable resources. Note that ‘csv’ is the default format for this method (rather
than pandas).

Parameters

• statement (str) – The statement to be executed against the database.

• file (str, file-like-object) – The filename where the data should be written,
or an open file-like resource.

• format (str) – The format to be used (‘csv’ by default). Format options can be passed
via **kwargs.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs – Additional keyword arguments to pass onto DatabaseClient.stream.

table_desc(table, renew=True, **kwargs)
Describe a table in the database.

Parameters

• table (str) – The table to describe.

• renew (bool) – Whether to renew the results (default: True).

76 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A dataframe description of the table.

Return type pandas.DataFrame

table_drop(table, **kwargs)
Remove a table from the database.

Parameters

• table (str) – The table to drop.

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The cursor associated with this execution.

Return type DB-API cursor

table_exists(table, renew=True, **kwargs)
Check whether a table exists.

Parameters

• table (str) – The table for which to check.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns True if table exists, and False otherwise.

Return type bool

table_head(table, n=10, renew=True, **kwargs)
Retrieve the first n rows from a table.

Parameters

• table (str) – The table from which to extract data.

• n (int) – The number of rows to extract.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the first n rows of the nominated table.

Return type pandas.DataFrame

table_list(namespace=None, renew=True, **kwargs)
Return a list of table names in the data source as a DataFrame.

Parameters

• namespace (str) – The namespace in which to look for tables.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The names of schemas in this database.

Return type list<str>

table_partition_cols(table, renew=True, **kwargs)
Extract the columns by which a table is partitioned (if database supports partitions).

5.2. Databases 77

Omniduct Documentation, Release v1.1.19

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A list of columns by which table is partitioned.

Return type list<str>

table_props(table, renew=True, **kwargs)
Retrieve the properties associated with a table.

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the table properties.

Return type pandas.DataFrame

template_add(name, body)
Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See .template_render for more information.

Parameters

• name (str) – The name of the template.

• body (str) – The (typically) multiline body of the template.

Returns A reference to this object.

Return type PrestoClient

template_get(name)
Retrieve a named template.

Parameters name (str) – The name of the template to retrieve.

Raises ValueError – If name is not associated with a template.

Returns The requested template.

Return type str

template_names
A list of names associated with the templates associated with this client.

Type list

template_render(name_or_statement, context=None, by_name=False, cleanup=False,
meta_only=False)

Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail in the official jinja2 documentation, a
meta-templating extension is also provided. This meta-templating allows you to reference other reference
other templates. For example, if you had two SQL templates named ‘template_a’ and ‘template_b’, then
you could render them into one SQL query using (for example):

78 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

.template_render('''
WITH

a AS (
{{{template_a}}}

),
b AS (

{{{template_b}}}
)

SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can chain template embedding, provided that
such embedding is not recursive.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• context (dict, None) – A dictionary to use as the template context. If not specified,
an empty dictionary is used.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

• cleanup (bool) – True if the rendered statement should be formatted, False (default)
otherwise

• meta_only (bool) – True if rendering should only progress as far as rendering nested
templates (i.e. don’t actually substitute in variables from the context); False (default)
otherwise.

Returns The rendered template.

Return type str

template_variables(name_or_statement, by_name=False)
Return the set of undeclared variables required for this template.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

Returns A set of names which the template requires to be rendered.

Return type set<str>

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

5.2. Databases 79

Omniduct Documentation, Release v1.1.19

SQLAlchemyClient

class omniduct.databases.sqlalchemy.SQLAlchemyClient(session_properties=None,
templates=None, tem-
plate_context=None, de-
fault_format_opts=None,
**kwargs)

Bases: omniduct.databases.base.DatabaseClient, omniduct.databases._schemas.
SchemasMixin

This Duct connects to several different databases using one of several SQLAlchemy drivers. In general, these
are provided for their potential utility, but will be less functional than the specially crafted database clients.

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

NAMESPACE_DEFAULTS_READ
Backwards compatible shim for NAMESPACE_DEFAULTS.

80 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

NAMESPACE_DEFAULTS_WRITE
Unless overridden, this is the same as NAMESPACE_DEFAULTS_READ.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(session_properties=None, templates=None, template_context=None, de-
fault_format_opts=None, **kwargs)

session_properties (dict): A mapping of default session properties to values. Interpretation is left up
to implementations.

templates (dict): A dictionary of name to template mappings. Additional templates can be added us-
ing .template_add.

template_context (dict): The default template context to use when rendering templates.

default_format_opts (dict): The default formatting options passed to cursor formatter.

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

dataframe_to_table(df, table, if_exists=’fail’, **kwargs)
Upload a local pandas dataframe into a table in this database.

Parameters

• df (pandas.DataFrame) – The dataframe to upload into the database.

• table (str, ParsedNamespaces) – The name of the table into which the dataframe
should be uploaded.

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._dataframe_to_table.

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

execute(statement, wait=True, cursor=None, session_properties=None, **kwargs)
Execute a statement against this database and return a cursor object.

Where supported by database implementations, this cursor can the be used in future executions, by passing
it as the cursor keyword argument.

5.2. Databases 81

Omniduct Documentation, Release v1.1.19

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• wait (bool) – Whether the cursor should be returned before the server-side query com-
putation is complete and the relevant results downloaded.

• cursor (DBAPI2 cursor) – Rather than creating a new cursor, execute the statement
against the provided cursor.

• session_properties (dict) – Additional session properties and/or overrides to use
for this query. Setting a session property value to None will cause it to be omitted.

• **kwargs (dict) – Extra keyword arguments to be passed on to _execute, as imple-
mented by subclasses.

• template (bool) – Whether the statement should be treated as a Jinja2 template. [Used
by render_statement decorator.]

• context (dict) – The context in which the template should be evaluated (a dictionary
of parameters to values). [Used by render_statement decorator.]

• use_cache (bool) – True or False (default). Whether to use the cache (if present).
[Used by cached_method decorator.]

• renew (bool) – True or False (default). If cache is being used, renew it before returning
stored value. [Used by cached_method decorator.]

• cleanup (bool) – Whether statement should be cleaned up before computing the hash
used to cache results. [Used by cached_method decorator.]

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

execute_from_file(file, fs=None, **kwargs)
Execute a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.execute.

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

execute_from_template(name, context=None, **kwargs)
Render and then execute a named template.

Parameters

• name (str) – The name of the template to be rendered and executed.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .execute().

Returns A DBAPI2 compatible cursor instance.

Return type DBAPI2 cursor

82 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

SQLAlchemyClient Quirks: This method may be overridden by subclasses, but provides the following
default behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

5.2. Databases 83

Omniduct Documentation, Release v1.1.19

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

query(statement, format=None, format_opts={}, use_cache=True, **kwargs)
Execute a statement against this database and collect formatted data.

Parameters

• statement (str) – The statement to be executed by the query client (possibly tem-
plated).

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• use_cache (bool) – Whether to cache the cursor returned by DatabaseClient.execute()
(overrides the default of False for .execute()). (default=True)

• **kwargs (dict) – Additional arguments to pass on to DatabaseClient.execute().

Returns The results of the query formatted as nominated.

query_from_file(file, fs=None, **kwargs)
Query using a statement stored in a file.

Parameters

• file (str, file-like-object) – The path of the file containing the query state-
ment to be executed against the database, or an open file-like resource.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs (dict) – Extra keyword arguments to pass on to DatabaseClient.query.

Returns The results of the query formatted as nominated.

Return type object

query_from_template(name, context=None, **kwargs)
Render and then query using a named tempalte.

Parameters

• name (str) – The name of the template to be rendered and used to query the database.

• context (dict) – The context in which the template should be rendered.

• **kwargs (dict) – Additional parameters to pass to .query().

Returns The results of the query formatted as nominated.

Return type object

query_to_table(statement, table, if_exists=’fail’, **kwargs)
Run a query and store the results in a table in this database.

Parameters

• statement – The statement to be executed.

• table (str) – The name of the table into which the dataframe should be uploaded.

84 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• if_exists (str) – if nominated table already exists: ‘fail’ to do nothing, ‘replace’ to
drop, recreate and insert data into new table, and ‘append’ to add data from this table into
the existing table.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client._query_to_table.

Returns The cursor object associated with the execution.

Return type DB-API cursor

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

register_magics(base_name=None)
The following magic functions will be registered (assuming that the base name is chosen to be ‘hive’): -
Cell Magics:

• %%hive: For querying the database.

• %%hive.execute: For executing a statement against the database.

• %%hive.stream: For executing a statement against the database, and streaming the results.

• %%hive.template: The defining a new template.

• %%hive.render: Render a provided query statement.

• Line Magics:

– %hive: For querying the database using a named template.

– %hive.execute: For executing a named template statement against the database.

– %hive.stream: For executing a named template against the database, and streaming the
results.

– %hive.render: Render a provided a named template.

– %hive.desc: Describe the table nominated.

– %hive.head: Return the first rows in a specified table.

– %hive.props: Show the properties specified for a nominated table.

Documentation for these magics is provided online.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

schemas
An object with attributes corresponding to the names of the schemas in this database.

Type object

5.2. Databases 85

Omniduct Documentation, Release v1.1.19

session_properties
The default session properties used in statement executions.

Type dict

classmethod statement_cleanup(statement)
Clean up statements prior to hash computation.

This classmethod takes an SQL statement and reformats it by consistently removing comments and replac-
ing all whitespace. It is used by the statement_hash method to avoid functionally identical queries hitting
different cache keys. If the statement’s language is not to be SQL, this method should be overloaded
appropriately.

Parameters statement (str) – The statement to be reformatted/cleaned-up.

Returns The new statement, consistently reformatted.

Return type str

classmethod statement_hash(statement, cleanup=True)
Retrieve the hash to use to identify query statements to the cache.

Parameters

• statement (str) – A string representation of the statement to be hashed.

• cleanup (bool) – Whether the statement should first be consistently reformatted using
statement_cleanup.

Returns The hash used to identify a statement to the cache.

Return type str

stream(statement, format=None, format_opts={}, batch=None, **kwargs)
Execute a statement against this database and stream formatted results.

This method returns a generator over objects representing rows in the result set. If batch is not None, then
the iterator will be over lists of length batch containing formatted rows.

Parameters

• statement (str) – The statement to be executed against the database.

• format (str) – A subclass of CursorFormatter, or one of: ‘pandas’, ‘hive’, ‘csv’, ‘tuple’
or ‘dict’. Defaults to self.DEFAULT_CURSOR_FORMATTER.

• format_opts (dict) – A dictionary of format-specific options.

• batch (int) – If not None, the number of rows from the resulting cursor to be returned
at once.

• **kwargs (dict) – Additional keyword arguments to pass onto Database-
Client.execute.

Returns

An iterator over objects of the nominated format or, if batched, a list of such objects.

Return type iterator

stream_to_file(statement, file, format=’csv’, fs=None, **kwargs)
Execute a statement against this database and stream results to a file.

This method is a wrapper around DatabaseClient.stream that enables the iterative writing of cursor results
to a file. This is especially useful when there are a very large number of results, and loading them all into

86 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

memory would require considerable resources. Note that ‘csv’ is the default format for this method (rather
than pandas).

Parameters

• statement (str) – The statement to be executed against the database.

• file (str, file-like-object) – The filename where the data should be written,
or an open file-like resource.

• format (str) – The format to be used (‘csv’ by default). Format options can be passed
via **kwargs.

• fs (None, FileSystemClient) – The filesystem wihin which the nominated file
should be found. If None, the local filesystem will be used.

• **kwargs – Additional keyword arguments to pass onto DatabaseClient.stream.

table_desc(table, renew=True, **kwargs)
Describe a table in the database.

Parameters

• table (str) – The table to describe.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A dataframe description of the table.

Return type pandas.DataFrame

table_drop(table, **kwargs)
Remove a table from the database.

Parameters

• table (str) – The table to drop.

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The cursor associated with this execution.

Return type DB-API cursor

table_exists(table, renew=True, **kwargs)
Check whether a table exists.

Parameters

• table (str) – The table for which to check.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns True if table exists, and False otherwise.

Return type bool

table_head(table, n=10, renew=True, **kwargs)
Retrieve the first n rows from a table.

Parameters

• table (str) – The table from which to extract data.

• n (int) – The number of rows to extract.

5.2. Databases 87

Omniduct Documentation, Release v1.1.19

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the first n rows of the nominated table.

Return type pandas.DataFrame

table_list(namespace=None, renew=True, **kwargs)
Return a list of table names in the data source as a DataFrame.

Parameters

• namespace (str) – The namespace in which to look for tables.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns The names of schemas in this database.

Return type list<str>

table_partition_cols(table, renew=True, **kwargs)
Extract the columns by which a table is partitioned (if database supports partitions).

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns A list of columns by which table is partitioned.

Return type list<str>

table_props(table, renew=True, **kwargs)
Retrieve the properties associated with a table.

Parameters

• table (str) – The table from which to extract data.

• renew (bool) – Whether to renew the table list or use cached results (default: True).

• **kwargs (dict) – Additional arguments passed through to implementation.

Returns

A dataframe representation of the table properties.

Return type pandas.DataFrame

template_add(name, body)
Add a named template to the internal dictionary of templates.

Note: Templates are interpreted as jinja2 templates. See .template_render for more information.

Parameters

• name (str) – The name of the template.

• body (str) – The (typically) multiline body of the template.

Returns A reference to this object.

88 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Return type PrestoClient

template_get(name)
Retrieve a named template.

Parameters name (str) – The name of the template to retrieve.

Raises ValueError – If name is not associated with a template.

Returns The requested template.

Return type str

template_names
A list of names associated with the templates associated with this client.

Type list

template_render(name_or_statement, context=None, by_name=False, cleanup=False,
meta_only=False)

Render a template by name or value.

In addition to the jinja2 templating syntax, described in more detail in the official jinja2 documentation, a
meta-templating extension is also provided. This meta-templating allows you to reference other reference
other templates. For example, if you had two SQL templates named ‘template_a’ and ‘template_b’, then
you could render them into one SQL query using (for example):

.template_render('''
WITH

a AS (
{{{template_a}}}

),
b AS (

{{{template_b}}}
)

SELECT *
FROM a
JOIN b ON a.x = b.x
''')

Note that template substitution in this way is iterative, so you can chain template embedding, provided that
such embedding is not recursive.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• context (dict, None) – A dictionary to use as the template context. If not specified,
an empty dictionary is used.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

• cleanup (bool) – True if the rendered statement should be formatted, False (default)
otherwise

• meta_only (bool) – True if rendering should only progress as far as rendering nested
templates (i.e. don’t actually substitute in variables from the context); False (default)
otherwise.

Returns The rendered template.

Return type str

5.2. Databases 89

Omniduct Documentation, Release v1.1.19

template_variables(name_or_statement, by_name=False)
Return the set of undeclared variables required for this template.

Parameters

• name_or_statement (str) – The name of a template (if by_name is True) or else a
string representation of a jinja2 template.

• by_name (bool) – True if name_or_statement should be interpreted as a template name,
or False (default) if name_or_statement should be interpreted as a template body.

Returns A set of names which the template requires to be rendered.

Return type set<str>

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

5.3 Filesystems

All database clients are expected to be subclasses of DatabaseClient, and so will share a common API and inherit a
suite of IPython magics. Protocol implementations are also free to add extra methods, which are documented in the
“Subclass Reference” section below.

5.3.1 Common API

class omniduct.filesystems.base.FileSystemClient(cwd=None, home=None,
read_only=False,
global_writes=False, **kwargs)

Bases: omniduct.duct.Duct, omniduct.utils.magics.MagicsProvider

An abstract class providing the common API for all filesystem clients.

Class Attributes

• DUCT_TYPE (Duct.Type) – The type of Duct protocol implemented by this class.

• DEFAULT_PORT (int) – The default port for the filesystem service (defined by sub-
classes).

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

90 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

__init__(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

cwd (None, str): The path prefix to use as the current working directory (if None, the user’s home
directory is used where that makes sense).

home (None, str): The path prefix to use as the current users’ home directory. If not specified, it will
default to an implementation- specific value (often ‘/’).

read_only (bool): Whether the filesystem should only be able to perform read operations.

global_writes (bool): Whether to allow writes outside of the user’s home folder.

**kwargs (dict): Additional keyword arguments to passed on to subclasses.

path_home
The path prefix to use as the current users’ home directory. Unless cwd is set, this will be the prefix to use
for all non-absolute path references on this filesystem. This is assumed not to change between connections,
and so will not be updated on client reconnections. Unless global_writes is set to True, this will be the
only folder into which this client is permitted to write.

Type str

path_cwd
The path prefix associated with the current working directory. If not otherwise set, it will be the users’
home directory, and will be the prefix used by all non-absolute path references on this filesystem.

Type str

path_separator
The character(s) to use in separating path components. Typically this will be ‘/’.

5.3. Filesystems 91

Omniduct Documentation, Release v1.1.19

Type str

path_join(path, *components)
Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all previous path components are discarded,
and the effective base path becomes that component (with ‘~’ expanding to self.path_home). Note that this
method does not simplify paths components like ‘..’. Use self.path_normpath for this purpose.

Parameters

• path (str) – The base path to which components should be joined.

• *components (str) – Any additional components to join to the base path.

Returns The path resulting from joining all of the components nominated, in order, to the base
path.

Return type str

path_basename(path)
Extract the last component of a given path.

Components are determined by splitting by self.path_separator. Note that if a path ends with a path
separator, the basename will be the empty string.

Parameters path (str) – The path from which the basename should be extracted.

Returns The extracted basename.

Return type str

path_dirname(path)
Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last component), where components are
determined by splitting by self.path_separator.

Parameters path (str) – The path from which the directory path should be extracted.

Returns The extracted directory path.

Return type str

path_normpath(path)
Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path on this filesystem.

Parameters path (str) – The path to normalise (make absolute).

Returns The normalised path.

Return type str

read_only
Whether this filesystem client should be permitted to attempt any write operations.

Type bool

global_writes
Whether writes should be permitted outside of home directory. This write-lock is designed to prevent
inadvertent scripted writing in potentially dangerous places.

Type bool

92 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

exists(path)
Check whether nominated path exists on this filesytem.

Parameters path (str) – The path for which to check existence.

Returns

True if file/folder exists at nominated path, and False otherwise.

Return type bool

isdir(path)
Check whether a nominated path is directory.

Parameters path (str) – The path for which to check directory nature.

Returns True if folder exists at nominated path, and False otherwise.

Return type bool

isfile(path)
Check whether a nominated path is a file.

Parameters path (str) – The path for which to check file nature.

Returns True if a file exists at nominated path, and False otherwise.

Return type bool

dir(path=None)
Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that represent the files/directories that a
present as children of the nominated path. If path is not a directory, an exception is raised. The path is
interpreted as being relative to the current working directory (on remote filesytems, this will typically be
the home folder).

Parameters path (str) – The path to examine for children.

Returns The children of path represented as FileSystemFileDesc objects.

Return type generator<FileSystemFileDesc>

This method should return a generator over FileSystemFileDesc objects.

listdir(path=None)
Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and returns the names of child members
as strings. path is interpreted relative to the current working directory (on remote filesytems, this will
typically be the home folder).

Parameters path (str) – The path of the directory from which to enumerate filenames.

Returns The names of all children of the nominated directory.

Return type list<str>

showdir(path=None)
Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of a path, which are retrieved using
.dir(path). The exact columns will vary from filesystem to filesystem, depending on the fields returned by
.dir(), but the returned DataFrame is guaranteed to at least have the columns: ‘name’ and ‘type’.

Parameters path (str) – The path of the directory from which to show contents.

5.3. Filesystems 93

Omniduct Documentation, Release v1.1.19

Returns A DataFrame representation of the contents of the nominated directory.

Return type pandas.DataFrame

walk(path=None)
Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths that are children of path, one result
for each directory, of form: (<path name>, [<directory 1>, . . .], [<file 1>, . . .])

Parameters path (str) – The path of the directory from which to enumerate contents.

Returns A generator of tuples, each tuple being associated with one directory that is either path
or one of its descendants.

Return type generator<tuple>

find(path_prefix=None, **attrs)
Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain constraints on the attributes of the file
(as encoded into FileSystemFileDesc). Note that without attribute constraints, this method will function
identically to self.dir.

Parameters

• path_prefix (str) – The path under which files/directories should be found.

• **attrs (dict) – Constraints on the fields of the FileSystemFileDesc objects associated
with this filesystem, as constant values or callable objects (in which case the object will be
called and should return True if attribute value is match, and False otherwise).

Returns

A generator over FileSystemFileDesc objects that are descendents of path_prefix and
which statisfy provided constraints.

Return type generator<FileSystemFileDesc>

mkdir(path, recursive=True, exist_ok=False)
Create a directory at the given path.

Parameters

• path (str) – The path of the directory to create.

• recursive (bool) – Whether to recursively create any parents of this path if they do
not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir rather that implementing the existence
check using .exists so that they can avoid the overhead associated with multiple operations, which can be
costly in some cases.

remove(path, recursive=False)
Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive is set to True.

Parameters

• path (str) – The path of the file/directory to be removed.

• recursive (bool) – Whether to remove directories and all of their contents.

open(path, mode=’rt’)
Open a file for reading and/or writing.

94 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

This method opens the file at the given path for reading and/or writing operations. The object returned
is programmatically interchangeable with any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed to the source filesystem when the
file is closed.

Parameters

• path (str) – The path of the file to open.

• mode (str) – All standard Python file modes.

Returns An opened file-like object.

Return type FileSystemFile or file-like

download(source, dest=None, overwrite=False, fs=None)
Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on this filesystem to the path dest on
filesytem fs, overwriting any existing file if overwrite is True.

Parameters

• source (str) – The path on this filesystem of the file to download to the nominated
filesystem (fs). If source ends with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path does not resolve to a directory.

• dest (str) – The destination path on filesystem (fs). If not specified, the file/folder is
downloaded into the default path, usually one’s home folder. If dest ends with ‘/’, and
corresponds to a directory, the contents of source will be copied instead of copying the
entire folder. If dest is otherwise a directory, an exception will be raised.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient into which the nominated file/folder
source should be downloaded. If not specified, defaults to the local filesystem.

upload(source, dest=None, overwrite=False, fs=None)
Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on filesystem fs to the path dest on this
filesytem, overwriting any existing file if overwrite is True. This is equivalent to fs.download(. . . , fs=self).

Parameters

• source (str) – The path on the specified filesystem (fs) of the file to upload to this
filesystem. If source ends with ‘/’, and corresponds to a directory, the contents of source
will be copied instead of copying the entire folder.

• dest (str) – The destination path on this filesystem. If not specified, the file/folder is
uploaded into the default path, usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and will throw an error if path does
not resolve to a directory.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient from which to load the file/folder at
source. If not specified, defaults to the local filesystem.

connect()
Connect to the service backing this client.

5.3. Filesystems 95

Omniduct Documentation, Release v1.1.19

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

FileSystemClient Quirks: This method may be overridden by subclasses, but provides the following
default behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

class omniduct.filesystems.base.FileSystemFile(fs, path, mode=’r’)
Bases: object

A file-like implementation that is interchangeable with native Python file objects, allowing remote files to be
treated identically to local files both by omniduct, the user and other libraries.

__init__(fs, path, mode=’r’)
Initialize self. See help(type(self)) for accurate signature.

class omniduct.filesystems.base.FileSystemFileDesc
Bases: omniduct.filesystems.base.Node

96 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

A representation of a file/directory stored within an Omniduct FileSystemClient.

5.3.2 Subclass Reference

For comprehensive documentation on any particular subclass, please refer to one of the below documents.

LocalFsClient

class omniduct.filesystems.local.LocalFsClient(cwd=None, home=None,
read_only=False, global_writes=False,
**kwargs)

Bases: omniduct.filesystems.base.FileSystemClient

LocalFsClient is a Duct that implements the FileSystemClient common API, and exposes the local filesystem.

Unlike most other filesystems, LocalFsClient defaults to the current working directory on the local machine,
rather than the home directory as used on remote filesystems. To change this, you can always execute: `
local_fs.path_cwd = local_fs.path_home `

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

5.3. Filesystems 97

Omniduct Documentation, Release v1.1.19

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

cwd (None, str): The path prefix to use as the current working directory (if None, the user’s home
directory is used where that makes sense).

home (None, str): The path prefix to use as the current users’ home directory. If not specified, it will
default to an implementation- specific value (often ‘/’).

read_only (bool): Whether the filesystem should only be able to perform read operations.

global_writes (bool): Whether to allow writes outside of the user’s home folder.

**kwargs (dict): Additional keyword arguments to passed on to subclasses.

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

dir(path=None)
Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that represent the files/directories that a
present as children of the nominated path. If path is not a directory, an exception is raised. The path is
interpreted as being relative to the current working directory (on remote filesytems, this will typically be
the home folder).

Parameters path (str) – The path to examine for children.

Returns The children of path represented as FileSystemFileDesc objects.

Return type generator<FileSystemFileDesc>

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

download(source, dest=None, overwrite=False, fs=None)
Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on this filesystem to the path dest on
filesytem fs, overwriting any existing file if overwrite is True.

98 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Parameters

• source (str) – The path on this filesystem of the file to download to the nominated
filesystem (fs). If source ends with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path does not resolve to a directory.

• dest (str) – The destination path on filesystem (fs). If not specified, the file/folder is
downloaded into the default path, usually one’s home folder. If dest ends with ‘/’, and
corresponds to a directory, the contents of source will be copied instead of copying the
entire folder. If dest is otherwise a directory, an exception will be raised.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient into which the nominated file/folder
source should be downloaded. If not specified, defaults to the local filesystem.

exists(path)
Check whether nominated path exists on this filesytem.

Parameters path (str) – The path for which to check existence.

Returns

True if file/folder exists at nominated path, and False otherwise.

Return type bool

find(path_prefix=None, **attrs)
Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain constraints on the attributes of the file
(as encoded into FileSystemFileDesc). Note that without attribute constraints, this method will function
identically to self.dir.

Parameters

• path_prefix (str) – The path under which files/directories should be found.

• **attrs (dict) – Constraints on the fields of the FileSystemFileDesc objects associated
with this filesystem, as constant values or callable objects (in which case the object will be
called and should return True if attribute value is match, and False otherwise).

Returns

A generator over FileSystemFileDesc objects that are descendents of path_prefix and
which statisfy provided constraints.

Return type generator<FileSystemFileDesc>

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

5.3. Filesystems 99

Omniduct Documentation, Release v1.1.19

global_writes
Whether writes should be permitted outside of home directory. This write-lock is designed to prevent
inadvertent scripted writing in potentially dangerous places.

Type bool

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

isdir(path)
Check whether a nominated path is directory.

Parameters path (str) – The path for which to check directory nature.

Returns True if folder exists at nominated path, and False otherwise.

Return type bool

isfile(path)
Check whether a nominated path is a file.

Parameters path (str) – The path for which to check file nature.

Returns True if a file exists at nominated path, and False otherwise.

Return type bool

listdir(path=None)
Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and returns the names of child members
as strings. path is interpreted relative to the current working directory (on remote filesytems, this will
typically be the home folder).

Parameters path (str) – The path of the directory from which to enumerate filenames.

Returns The names of all children of the nominated directory.

Return type list<str>

mkdir(path, recursive=True, exist_ok=False)
Create a directory at the given path.

Parameters

• path (str) – The path of the directory to create.

• recursive (bool) – Whether to recursively create any parents of this path if they do
not already exist.

100 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Note: exist_ok is passed onto subclass implementations of _mkdir rather that implementing the existence
check using .exists so that they can avoid the overhead associated with multiple operations, which can be
costly in some cases.

open(path, mode=’rt’)
Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing operations. The object returned
is programmatically interchangeable with any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed to the source filesystem when the
file is closed.

Parameters

• path (str) – The path of the file to open.

• mode (str) – All standard Python file modes.

Returns An opened file-like object.

Return type FileSystemFile or file-like

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

path_basename(path)
Extract the last component of a given path.

Components are determined by splitting by self.path_separator. Note that if a path ends with a path
separator, the basename will be the empty string.

Parameters path (str) – The path from which the basename should be extracted.

Returns The extracted basename.

Return type str

path_cwd
The path prefix associated with the current working directory. If not otherwise set, it will be the users’
home directory, and will be the prefix used by all non-absolute path references on this filesystem.

Type str

path_dirname(path)
Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last component), where components are
determined by splitting by self.path_separator.

Parameters path (str) – The path from which the directory path should be extracted.

Returns The extracted directory path.

Return type str

path_home
The path prefix to use as the current users’ home directory. Unless cwd is set, this will be the prefix to use
for all non-absolute path references on this filesystem. This is assumed not to change between connections,
and so will not be updated on client reconnections. Unless global_writes is set to True, this will be the
only folder into which this client is permitted to write.

5.3. Filesystems 101

Omniduct Documentation, Release v1.1.19

Type str

path_join(path, *components)
Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all previous path components are discarded,
and the effective base path becomes that component (with ‘~’ expanding to self.path_home). Note that this
method does not simplify paths components like ‘..’. Use self.path_normpath for this purpose.

Parameters

• path (str) – The base path to which components should be joined.

• *components (str) – Any additional components to join to the base path.

Returns The path resulting from joining all of the components nominated, in order, to the base
path.

Return type str

path_normpath(path)
Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path on this filesystem.

Parameters path (str) – The path to normalise (make absolute).

Returns The normalised path.

Return type str

path_separator
The character(s) to use in separating path components. Typically this will be ‘/’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

read_only
Whether this filesystem client should be permitted to attempt any write operations.

Type bool

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

102 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

remove(path, recursive=False)
Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive is set to True.

Parameters

• path (str) – The path of the file/directory to be removed.

• recursive (bool) – Whether to remove directories and all of their contents.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

showdir(path=None)
Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of a path, which are retrieved using
.dir(path). The exact columns will vary from filesystem to filesystem, depending on the fields returned by
.dir(), but the returned DataFrame is guaranteed to at least have the columns: ‘name’ and ‘type’.

Parameters path (str) – The path of the directory from which to show contents.

Returns A DataFrame representation of the contents of the nominated directory.

Return type pandas.DataFrame

upload(source, dest=None, overwrite=False, fs=None)
Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on filesystem fs to the path dest on this
filesytem, overwriting any existing file if overwrite is True. This is equivalent to fs.download(. . . , fs=self).

Parameters

• source (str) – The path on the specified filesystem (fs) of the file to upload to this
filesystem. If source ends with ‘/’, and corresponds to a directory, the contents of source
will be copied instead of copying the entire folder.

• dest (str) – The destination path on this filesystem. If not specified, the file/folder is
uploaded into the default path, usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and will throw an error if path does
not resolve to a directory.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient from which to load the file/folder at
source. If not specified, defaults to the local filesystem.

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

5.3. Filesystems 103

Omniduct Documentation, Release v1.1.19

walk(path=None)
Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths that are children of path, one result
for each directory, of form: (<path name>, [<directory 1>, . . .], [<file 1>, . . .])

Parameters path (str) – The path of the directory from which to enumerate contents.

Returns A generator of tuples, each tuple being associated with one directory that is either path
or one of its descendants.

Return type generator<tuple>

S3Client

class omniduct.filesystems.s3.S3Client(cwd=None, home=None, read_only=False,
global_writes=False, **kwargs)

Bases: omniduct.filesystems.base.FileSystemClient

This Duct connects to an Amazon S3 bucket instance using the boto3 library. Authentication is (optionally)
handled using opinel.

Attributes

• bucket (str) – The name of the Amazon S3 bucket to use.

• aws_profile (str) – The name of configured AWS profile to use. This should refer to the
name of a profile configured in, for example, ~/.aws/credentials. Authentication is handled
by the opinel library, which is also aware of environment variables.

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

104 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

cwd (None, str): The path prefix to use as the current working directory (if None, the user’s home
directory is used where that makes sense).

home (None, str): The path prefix to use as the current users’ home directory. If not specified, it will
default to an implementation- specific value (often ‘/’).

read_only (bool): Whether the filesystem should only be able to perform read operations.

global_writes (bool): Whether to allow writes outside of the user’s home folder.

**kwargs (dict): Additional keyword arguments to passed on to subclasses.

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

dir(path=None)
Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that represent the files/directories that a
present as children of the nominated path. If path is not a directory, an exception is raised. The path is
interpreted as being relative to the current working directory (on remote filesytems, this will typically be
the home folder).

Parameters path (str) – The path to examine for children.

Returns The children of path represented as FileSystemFileDesc objects.

Return type generator<FileSystemFileDesc>

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

5.3. Filesystems 105

Omniduct Documentation, Release v1.1.19

Return type Duct instance

download(source, dest=None, overwrite=False, fs=None)
Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on this filesystem to the path dest on
filesytem fs, overwriting any existing file if overwrite is True.

Parameters

• source (str) – The path on this filesystem of the file to download to the nominated
filesystem (fs). If source ends with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path does not resolve to a directory.

• dest (str) – The destination path on filesystem (fs). If not specified, the file/folder is
downloaded into the default path, usually one’s home folder. If dest ends with ‘/’, and
corresponds to a directory, the contents of source will be copied instead of copying the
entire folder. If dest is otherwise a directory, an exception will be raised.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient into which the nominated file/folder
source should be downloaded. If not specified, defaults to the local filesystem.

exists(path)
Check whether nominated path exists on this filesytem.

Parameters path (str) – The path for which to check existence.

Returns

True if file/folder exists at nominated path, and False otherwise.

Return type bool

find(path_prefix=None, **attrs)
Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain constraints on the attributes of the file
(as encoded into FileSystemFileDesc). Note that without attribute constraints, this method will function
identically to self.dir.

Parameters

• path_prefix (str) – The path under which files/directories should be found.

• **attrs (dict) – Constraints on the fields of the FileSystemFileDesc objects associated
with this filesystem, as constant values or callable objects (in which case the object will be
called and should return True if attribute value is match, and False otherwise).

Returns

A generator over FileSystemFileDesc objects that are descendents of path_prefix and
which statisfy provided constraints.

Return type generator<FileSystemFileDesc>

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

106 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

global_writes
Whether writes should be permitted outside of home directory. This write-lock is designed to prevent
inadvertent scripted writing in potentially dangerous places.

Type bool

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

isdir(path)
Check whether a nominated path is directory.

Parameters path (str) – The path for which to check directory nature.

Returns True if folder exists at nominated path, and False otherwise.

Return type bool

isfile(path)
Check whether a nominated path is a file.

Parameters path (str) – The path for which to check file nature.

Returns True if a file exists at nominated path, and False otherwise.

Return type bool

listdir(path=None)
Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and returns the names of child members
as strings. path is interpreted relative to the current working directory (on remote filesytems, this will
typically be the home folder).

Parameters path (str) – The path of the directory from which to enumerate filenames.

Returns The names of all children of the nominated directory.

Return type list<str>

mkdir(path, recursive=True, exist_ok=False)
Create a directory at the given path.

Parameters

5.3. Filesystems 107

Omniduct Documentation, Release v1.1.19

• path (str) – The path of the directory to create.

• recursive (bool) – Whether to recursively create any parents of this path if they do
not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir rather that implementing the existence
check using .exists so that they can avoid the overhead associated with multiple operations, which can be
costly in some cases.

open(path, mode=’rt’)
Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing operations. The object returned
is programmatically interchangeable with any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed to the source filesystem when the
file is closed.

Parameters

• path (str) – The path of the file to open.

• mode (str) – All standard Python file modes.

Returns An opened file-like object.

Return type FileSystemFile or file-like

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

path_basename(path)
Extract the last component of a given path.

Components are determined by splitting by self.path_separator. Note that if a path ends with a path
separator, the basename will be the empty string.

Parameters path (str) – The path from which the basename should be extracted.

Returns The extracted basename.

Return type str

path_cwd
The path prefix associated with the current working directory. If not otherwise set, it will be the users’
home directory, and will be the prefix used by all non-absolute path references on this filesystem.

Type str

path_dirname(path)
Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last component), where components are
determined by splitting by self.path_separator.

Parameters path (str) – The path from which the directory path should be extracted.

Returns The extracted directory path.

Return type str

108 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

path_home
The path prefix to use as the current users’ home directory. Unless cwd is set, this will be the prefix to use
for all non-absolute path references on this filesystem. This is assumed not to change between connections,
and so will not be updated on client reconnections. Unless global_writes is set to True, this will be the
only folder into which this client is permitted to write.

Type str

path_join(path, *components)
Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all previous path components are discarded,
and the effective base path becomes that component (with ‘~’ expanding to self.path_home). Note that this
method does not simplify paths components like ‘..’. Use self.path_normpath for this purpose.

Parameters

• path (str) – The base path to which components should be joined.

• *components (str) – Any additional components to join to the base path.

Returns The path resulting from joining all of the components nominated, in order, to the base
path.

Return type str

path_normpath(path)
Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path on this filesystem.

Parameters path (str) – The path to normalise (make absolute).

Returns The normalised path.

Return type str

path_separator
The character(s) to use in separating path components. Typically this will be ‘/’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

S3Client Quirks: This method may be overridden by subclasses, but provides the following default be-
haviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

5.3. Filesystems 109

Omniduct Documentation, Release v1.1.19

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

read_only
Whether this filesystem client should be permitted to attempt any write operations.

Type bool

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

remove(path, recursive=False)
Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive is set to True.

Parameters

• path (str) – The path of the file/directory to be removed.

• recursive (bool) – Whether to remove directories and all of their contents.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

showdir(path=None)
Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of a path, which are retrieved using
.dir(path). The exact columns will vary from filesystem to filesystem, depending on the fields returned by
.dir(), but the returned DataFrame is guaranteed to at least have the columns: ‘name’ and ‘type’.

Parameters path (str) – The path of the directory from which to show contents.

Returns A DataFrame representation of the contents of the nominated directory.

Return type pandas.DataFrame

upload(source, dest=None, overwrite=False, fs=None)
Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on filesystem fs to the path dest on this
filesytem, overwriting any existing file if overwrite is True. This is equivalent to fs.download(. . . , fs=self).

Parameters

110 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• source (str) – The path on the specified filesystem (fs) of the file to upload to this
filesystem. If source ends with ‘/’, and corresponds to a directory, the contents of source
will be copied instead of copying the entire folder.

• dest (str) – The destination path on this filesystem. If not specified, the file/folder is
uploaded into the default path, usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and will throw an error if path does
not resolve to a directory.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient from which to load the file/folder at
source. If not specified, defaults to the local filesystem.

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

walk(path=None)
Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths that are children of path, one result
for each directory, of form: (<path name>, [<directory 1>, . . .], [<file 1>, . . .])

Parameters path (str) – The path of the directory from which to enumerate contents.

Returns A generator of tuples, each tuple being associated with one directory that is either path
or one of its descendants.

Return type generator<tuple>

WebHdfsClient

class omniduct.filesystems.webhdfs.WebHdfsClient(cwd=None, home=None,
read_only=False,
global_writes=False, **kwargs)

Bases: omniduct.filesystems.base.FileSystemClient

This Duct connects to an Apache WebHDFS server using the pywebhdfs library.

Attributes namenodes (list<str>) – A list of hosts that are acting as namenodes for the HDFS
cluster in form “<hostname>:<port>”.

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

5.3. Filesystems 111

Omniduct Documentation, Release v1.1.19

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(cwd=None, home=None, read_only=False, global_writes=False, **kwargs)

cwd (None, str): The path prefix to use as the current working directory (if None, the user’s home
directory is used where that makes sense).

home (None, str): The path prefix to use as the current users’ home directory. If not specified, it will
default to an implementation- specific value (often ‘/’).

read_only (bool): Whether the filesystem should only be able to perform read operations.

global_writes (bool): Whether to allow writes outside of the user’s home folder.

**kwargs (dict): Additional keyword arguments to passed on to subclasses.

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

112 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

dir(path=None)
Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that represent the files/directories that a
present as children of the nominated path. If path is not a directory, an exception is raised. The path is
interpreted as being relative to the current working directory (on remote filesytems, this will typically be
the home folder).

Parameters path (str) – The path to examine for children.

Returns The children of path represented as FileSystemFileDesc objects.

Return type generator<FileSystemFileDesc>

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

download(source, dest=None, overwrite=False, fs=None)
Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on this filesystem to the path dest on
filesytem fs, overwriting any existing file if overwrite is True.

Parameters

• source (str) – The path on this filesystem of the file to download to the nominated
filesystem (fs). If source ends with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path does not resolve to a directory.

• dest (str) – The destination path on filesystem (fs). If not specified, the file/folder is
downloaded into the default path, usually one’s home folder. If dest ends with ‘/’, and
corresponds to a directory, the contents of source will be copied instead of copying the
entire folder. If dest is otherwise a directory, an exception will be raised.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient into which the nominated file/folder
source should be downloaded. If not specified, defaults to the local filesystem.

exists(path)
Check whether nominated path exists on this filesytem.

Parameters path (str) – The path for which to check existence.

Returns

True if file/folder exists at nominated path, and False otherwise.

Return type bool

find(path_prefix=None, **attrs)
Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain constraints on the attributes of the file
(as encoded into FileSystemFileDesc). Note that without attribute constraints, this method will function
identically to self.dir.

5.3. Filesystems 113

Omniduct Documentation, Release v1.1.19

Parameters

• path_prefix (str) – The path under which files/directories should be found.

• **attrs (dict) – Constraints on the fields of the FileSystemFileDesc objects associated
with this filesystem, as constant values or callable objects (in which case the object will be
called and should return True if attribute value is match, and False otherwise).

Returns

A generator over FileSystemFileDesc objects that are descendents of path_prefix and
which statisfy provided constraints.

Return type generator<FileSystemFileDesc>

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

global_writes
Whether writes should be permitted outside of home directory. This write-lock is designed to prevent
inadvertent scripted writing in potentially dangerous places.

Type bool

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

isdir(path)
Check whether a nominated path is directory.

Parameters path (str) – The path for which to check directory nature.

Returns True if folder exists at nominated path, and False otherwise.

Return type bool

isfile(path)
Check whether a nominated path is a file.

Parameters path (str) – The path for which to check file nature.

114 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Returns True if a file exists at nominated path, and False otherwise.

Return type bool

listdir(path=None)
Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and returns the names of child members
as strings. path is interpreted relative to the current working directory (on remote filesytems, this will
typically be the home folder).

Parameters path (str) – The path of the directory from which to enumerate filenames.

Returns The names of all children of the nominated directory.

Return type list<str>

mkdir(path, recursive=True, exist_ok=False)
Create a directory at the given path.

Parameters

• path (str) – The path of the directory to create.

• recursive (bool) – Whether to recursively create any parents of this path if they do
not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir rather that implementing the existence
check using .exists so that they can avoid the overhead associated with multiple operations, which can be
costly in some cases.

open(path, mode=’rt’)
Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing operations. The object returned
is programmatically interchangeable with any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed to the source filesystem when the
file is closed.

Parameters

• path (str) – The path of the file to open.

• mode (str) – All standard Python file modes.

Returns An opened file-like object.

Return type FileSystemFile or file-like

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

path_basename(path)
Extract the last component of a given path.

Components are determined by splitting by self.path_separator. Note that if a path ends with a path
separator, the basename will be the empty string.

Parameters path (str) – The path from which the basename should be extracted.

Returns The extracted basename.

5.3. Filesystems 115

Omniduct Documentation, Release v1.1.19

Return type str

path_cwd
The path prefix associated with the current working directory. If not otherwise set, it will be the users’
home directory, and will be the prefix used by all non-absolute path references on this filesystem.

Type str

path_dirname(path)
Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last component), where components are
determined by splitting by self.path_separator.

Parameters path (str) – The path from which the directory path should be extracted.

Returns The extracted directory path.

Return type str

path_home
The path prefix to use as the current users’ home directory. Unless cwd is set, this will be the prefix to use
for all non-absolute path references on this filesystem. This is assumed not to change between connections,
and so will not be updated on client reconnections. Unless global_writes is set to True, this will be the
only folder into which this client is permitted to write.

Type str

path_join(path, *components)
Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all previous path components are discarded,
and the effective base path becomes that component (with ‘~’ expanding to self.path_home). Note that this
method does not simplify paths components like ‘..’. Use self.path_normpath for this purpose.

Parameters

• path (str) – The base path to which components should be joined.

• *components (str) – Any additional components to join to the base path.

Returns The path resulting from joining all of the components nominated, in order, to the base
path.

Return type str

path_normpath(path)
Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path on this filesystem.

Parameters path (str) – The path to normalise (make absolute).

Returns The normalised path.

Return type str

path_separator
The character(s) to use in separating path components. Typically this will be ‘/’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

116 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Type int

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

WebHdfsClient Quirks: This method may be overridden by subclasses, but provides the following de-
fault behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

read_only
Whether this filesystem client should be permitted to attempt any write operations.

Type bool

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

remove(path, recursive=False)
Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive is set to True.

Parameters

• path (str) – The path of the file/directory to be removed.

• recursive (bool) – Whether to remove directories and all of their contents.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

showdir(path=None)
Return a dataframe representation of a directory.

5.3. Filesystems 117

Omniduct Documentation, Release v1.1.19

This method returns a pandas.DataFrame representation of the contents of a path, which are retrieved using
.dir(path). The exact columns will vary from filesystem to filesystem, depending on the fields returned by
.dir(), but the returned DataFrame is guaranteed to at least have the columns: ‘name’ and ‘type’.

Parameters path (str) – The path of the directory from which to show contents.

Returns A DataFrame representation of the contents of the nominated directory.

Return type pandas.DataFrame

upload(source, dest=None, overwrite=False, fs=None)
Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on filesystem fs to the path dest on this
filesytem, overwriting any existing file if overwrite is True. This is equivalent to fs.download(. . . , fs=self).

Parameters

• source (str) – The path on the specified filesystem (fs) of the file to upload to this
filesystem. If source ends with ‘/’, and corresponds to a directory, the contents of source
will be copied instead of copying the entire folder.

• dest (str) – The destination path on this filesystem. If not specified, the file/folder is
uploaded into the default path, usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and will throw an error if path does
not resolve to a directory.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient from which to load the file/folder at
source. If not specified, defaults to the local filesystem.

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

walk(path=None)
Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths that are children of path, one result
for each directory, of form: (<path name>, [<directory 1>, . . .], [<file 1>, . . .])

Parameters path (str) – The path of the directory from which to enumerate contents.

Returns A generator of tuples, each tuple being associated with one directory that is either path
or one of its descendants.

Return type generator<tuple>

5.4 Remotes

All remote clients are expected to be subclasses of RemoteClient, and so will share a common API. Protocol imple-
mentations are also free to add extra methods, which are documented in the “Subclass Reference” section below.

118 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

5.4.1 Common API

class omniduct.remotes.base.RemoteClient(smartcards=None, **kwargs)
Bases: omniduct.filesystems.base.FileSystemClient

An abstract class providing the common API for all remote clients.

Attributes smartcard (dict) – Mapping of smartcard names to system libraries compatible with
ssh-add -s ‘<system library>’

Attributes smartcard (dict) – Mapping of smartcard names to system libraries compatible with
ssh-add -s ‘<system library>’

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

__init__(smartcards=None, **kwargs)

5.4. Remotes 119

Omniduct Documentation, Release v1.1.19

Parameters smartcards (dict) – Mapping of smartcard names to system libraries compat-
ible with ssh-add -s ‘<system library>’

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

RemoteClient Quirks: Connect to the remote server.

It is not normally necessary for a user to manually call this function, since when a connection is
required, it is automatically created.

Compared to base Duct.connect, this method will automatically catch the first DuctAuthentication-
Error error triggered by Duct.connect, and (if smartcards have been configured) attempt to re-initialise
the smartcards before trying once more.

Returns: Duct instance: A reference to the current object.

prepare_smartcards()
Prepare smartcards for use in authentication.

This method checks attempts to ensure that the each of the nominated smartcards is available and prepared
for use. This may result in interactive requests for pin confirmation, depending on the card.

Returns

Returns True if at least one smartcard was activated, and False otherwise.

Return type bool

execute(cmd, **kwargs)
Execute a command on the remote server.

Parameters

• cmd (str) – The command to run on the remote associated with this instance.

• **kwargs (dict) – Additional keyword arguments to be passed on to ._execute.

Returns The result of the execution.

Return type SubprocessResults

port_forward(remote_host, remote_port=None, local_port=None)
Initiate a port forward connection.

This method establishes a local port forwarding from a local port local to remote port remote. If local
is None, an available local port is automatically chosen. If the remote port is already forwarded, a new
connection is not established.

Parameters

• remote_host (str) – The hostname of the remote host in form: ‘hostname(:port)’.

• remote_port (int, None) – The remote port of the service.

• local_port (int, None) – The port to use locally (automatically determined if not
specified).

Returns The local port which is port forwarded to the remote service.

120 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Return type int

has_port_forward(remote_host=None, remote_port=None, local_port=None)
Check whether a port forward connection exists.

Parameters

• remote_host (str) – The hostname of the remote host in form: ‘hostname(:port)’.

• remote_port (int, None) – The remote port of the service.

• local_port (int, None) – The port used locally.

Returns

Whether a port-forward for this remote service exists, or if local port is specified,
whether that port is locally used for port forwarding.

Return type bool

port_forward_stop(local_port=None, remote_host=None, remote_port=None)
Disconnect an existing port forward connection.

If a local port is provided, then the forwarding (if any) associated with that port is found and stopped;
otherwise any established port forwarding associated with the nominated remote service is stopped.

Parameters

• remote_host (str) – The hostname of the remote host in form: ‘hostname(:port)’.

• remote_port (int, None) – The remote port of the service.

• local_port (int, None) – The port used locally.

port_forward_stopall()
Disconnect all existing port forwarding connections.

get_local_uri(uri)
Convert a remote uri to a local one.

This method takes a remote service uri accessible to the remote host and returns a local uri accessible
directly on the local host, establishing any necessary port forwarding in the process.

Parameters uri (str) – The remote uri to be made local.

Returns A local uri that tunnels all traffic to the remote host.

Return type str

show_port_forwards()
Print to stdout the active port forwards associated with this client.

is_port_bound(host, port)
Check whether a port on a remote host is accessible.

This method checks to see whether a particular port is active on a given host by attempting to establish a
connection with it.

Parameters

• host (str) – The hostname of the target service.

• port (int) – The port of the target service.

Returns Whether the port is active and accepting connections.

Return type bool

5.4. Remotes 121

Omniduct Documentation, Release v1.1.19

dir(path=None)
Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that represent the files/directories that a
present as children of the nominated path. If path is not a directory, an exception is raised. The path is
interpreted as being relative to the current working directory (on remote filesytems, this will typically be
the home folder).

Parameters path (str) – The path to examine for children.

Returns The children of path represented as FileSystemFileDesc objects.

Return type generator<FileSystemFileDesc>

RemoteClient Quirks: This method should return a generator over FileSystemFileDesc objects.

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

download(source, dest=None, overwrite=False, fs=None)
Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on this filesystem to the path dest on
filesytem fs, overwriting any existing file if overwrite is True.

Parameters

• source (str) – The path on this filesystem of the file to download to the nominated
filesystem (fs). If source ends with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path does not resolve to a directory.

• dest (str) – The destination path on filesystem (fs). If not specified, the file/folder is
downloaded into the default path, usually one’s home folder. If dest ends with ‘/’, and
corresponds to a directory, the contents of source will be copied instead of copying the
entire folder. If dest is otherwise a directory, an exception will be raised.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient into which the nominated file/folder
source should be downloaded. If not specified, defaults to the local filesystem.

exists(path)
Check whether nominated path exists on this filesytem.

Parameters path (str) – The path for which to check existence.

Returns

True if file/folder exists at nominated path, and False otherwise.

Return type bool

find(path_prefix=None, **attrs)
Find a file or directory based on certain attributes.

122 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

This method searches for files or folders which satisfy certain constraints on the attributes of the file
(as encoded into FileSystemFileDesc). Note that without attribute constraints, this method will function
identically to self.dir.

Parameters

• path_prefix (str) – The path under which files/directories should be found.

• **attrs (dict) – Constraints on the fields of the FileSystemFileDesc objects associated
with this filesystem, as constant values or callable objects (in which case the object will be
called and should return True if attribute value is match, and False otherwise).

Returns

A generator over FileSystemFileDesc objects that are descendents of path_prefix and
which statisfy provided constraints.

Return type generator<FileSystemFileDesc>

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

isdir(path)
Check whether a nominated path is directory.

Parameters path (str) – The path for which to check directory nature.

Returns True if folder exists at nominated path, and False otherwise.

Return type bool

isfile(path)
Check whether a nominated path is a file.

Parameters path (str) – The path for which to check file nature.

Returns True if a file exists at nominated path, and False otherwise.

Return type bool

mkdir(path, recursive=True, exist_ok=False)
Create a directory at the given path.

Parameters

• path (str) – The path of the directory to create.

• recursive (bool) – Whether to recursively create any parents of this path if they do
not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir rather that implementing the existence
check using .exists so that they can avoid the overhead associated with multiple operations, which can be
costly in some cases.

open(path, mode=’rt’)
Open a file for reading and/or writing.

5.4. Remotes 123

Omniduct Documentation, Release v1.1.19

This method opens the file at the given path for reading and/or writing operations. The object returned
is programmatically interchangeable with any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed to the source filesystem when the
file is closed.

Parameters

• path (str) – The path of the file to open.

• mode (str) – All standard Python file modes.

Returns An opened file-like object.

Return type FileSystemFile or file-like

path_home
The path prefix to use as the current users’ home directory. Unless cwd is set, this will be the prefix to use
for all non-absolute path references on this filesystem. This is assumed not to change between connections,
and so will not be updated on client reconnections. Unless global_writes is set to True, this will be the
only folder into which this client is permitted to write.

Type str

path_separator
The character(s) to use in separating path components. Typically this will be ‘/’.

Type str

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

RemoteClient Quirks: This method may be overridden by subclasses, but provides the following default
behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

remove(path, recursive=False)
Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive is set to True.

Parameters

• path (str) – The path of the file/directory to be removed.

• recursive (bool) – Whether to remove directories and all of their contents.

walk(path=None)
Explore the filesystem tree starting at a nominated path.

124 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

This method returns a generator which recursively walks over all paths that are children of path, one result
for each directory, of form: (<path name>, [<directory 1>, . . .], [<file 1>, . . .])

Parameters path (str) – The path of the directory from which to enumerate contents.

Returns A generator of tuples, each tuple being associated with one directory that is either path
or one of its descendants.

Return type generator<tuple>

5.4.2 Subclass Reference

For comprehensive documentation on any particular subclass, please refer to one of the below documents.

SSHClient

class omniduct.remotes.ssh.SSHClient(smartcards=None, **kwargs)
Bases: omniduct.remotes.base.RemoteClient

An implementation of the RemoteClient Duct, offering a persistent connection to remote hosts over SSH via the
CLI. As such, it requires that ssh be installed and on your executable path.

To speed up connections we use control sockets, which allows all connections to share one SSH transport. For
more details, refer to: https://puppetlabs.com/blog/speed-up-ssh-by-reusing-connections

Attributes interactive (bool) – Whether SSHClient should ask the user questions, if necessary, to
establish the connection. Production deployments using this client should set this to False. (de-
fault: False)

Attributes inherited from RemoteClient:

smartcard (dict): Mapping of smartcard names to system libraries compatible with ssh-add -s ‘<sys-
tem library>’

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

5.4. Remotes 125

https://puppetlabs.com/blog/speed-up-ssh-by-reusing-connections

Omniduct Documentation, Release v1.1.19

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(smartcards=None, **kwargs)

Parameters smartcards (dict) – Mapping of smartcard names to system libraries compat-
ible with ssh-add -s ‘<system library>’

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

RemoteClient Quirks: Connect to the remote server.

It is not normally necessary for a user to manually call this function, since when a connection is
required, it is automatically created.

Compared to base Duct.connect, this method will automatically catch the first DuctAuthentication-
Error error triggered by Duct.connect, and (if smartcards have been configured) attempt to re-initialise
the smartcards before trying once more.

Returns: Duct instance: A reference to the current object.

dir(path=None)
Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that represent the files/directories that a
present as children of the nominated path. If path is not a directory, an exception is raised. The path is
interpreted as being relative to the current working directory (on remote filesytems, this will typically be
the home folder).

126 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Parameters path (str) – The path to examine for children.

Returns The children of path represented as FileSystemFileDesc objects.

Return type generator<FileSystemFileDesc>

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

download(source, dest=None, overwrite=False, fs=None)
Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on this filesystem to the path dest on
filesytem fs, overwriting any existing file if overwrite is True.

Parameters

• source (str) – The path on this filesystem of the file to download to the nominated
filesystem (fs). If source ends with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path does not resolve to a directory.

• dest (str) – The destination path on filesystem (fs). If not specified, the file/folder is
downloaded into the default path, usually one’s home folder. If dest ends with ‘/’, and
corresponds to a directory, the contents of source will be copied instead of copying the
entire folder. If dest is otherwise a directory, an exception will be raised.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient into which the nominated file/folder
source should be downloaded. If not specified, defaults to the local filesystem.

SSHClient Quirks: Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on this filesystem to the path dest
on filesytem fs, overwriting any existing file if overwrite is True.

Args:

source (str): The path on this filesystem of the file to download to the nominated filesystem
(fs). If source ends with ‘/’ then contents of the the source directory will be copied into desti-
nation folder, and will throw an error if path does not resolve to a directory.

dest (str): The destination path on filesystem (fs). If not specified, the file/folder is uploaded
into the default path, usually one’s home folder. If dest ends with ‘/’, and corresponds to a
directory, the contents of source will be copied instead of copying the entire folder. If dest is
otherwise a directory, an exception will be raised.

overwrite (bool): True if the contents of any existing file by the same name should be over-
written, False otherwise.

fs (FileSystemClient): The FileSystemClient into which the nominated file/folder source
should be downloaded. If not specified, defaults to the local filesystem.

5.4. Remotes 127

Omniduct Documentation, Release v1.1.19

SSHClient Quirks: This method is overloaded so that remote-to-local downloads can be handled
specially using scp. Downloads to any non-local filesystem are handled using the standard imple-
mentation.

execute(cmd, **kwargs)
Execute a command on the remote server.

Parameters

• cmd (str) – The command to run on the remote associated with this instance.

• **kwargs (dict) – Additional keyword arguments to be passed on to ._execute.

Returns The result of the execution.

Return type SubprocessResults

SSHClient Quirks:

Additional Args:

skip_cwd (bool): Whether to skip changing to the current working directory associated
with this client before executing the command. This is mainly useful to methods internal to
this class.

exists(path)
Check whether nominated path exists on this filesytem.

Parameters path (str) – The path for which to check existence.

Returns

True if file/folder exists at nominated path, and False otherwise.

Return type bool

find(path_prefix=None, **attrs)
Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain constraints on the attributes of the file
(as encoded into FileSystemFileDesc). Note that without attribute constraints, this method will function
identically to self.dir.

Parameters

• path_prefix (str) – The path under which files/directories should be found.

• **attrs (dict) – Constraints on the fields of the FileSystemFileDesc objects associated
with this filesystem, as constant values or callable objects (in which case the object will be
called and should return True if attribute value is match, and False otherwise).

Returns

A generator over FileSystemFileDesc objects that are descendents of path_prefix and
which statisfy provided constraints.

Return type generator<FileSystemFileDesc>

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

128 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

get_local_uri(uri)
Convert a remote uri to a local one.

This method takes a remote service uri accessible to the remote host and returns a local uri accessible
directly on the local host, establishing any necessary port forwarding in the process.

Parameters uri (str) – The remote uri to be made local.

Returns A local uri that tunnels all traffic to the remote host.

Return type str

global_writes
Whether writes should be permitted outside of home directory. This write-lock is designed to prevent
inadvertent scripted writing in potentially dangerous places.

Type bool

has_port_forward(remote_host=None, remote_port=None, local_port=None)
Check whether a port forward connection exists.

Parameters

• remote_host (str) – The hostname of the remote host in form: ‘hostname(:port)’.

• remote_port (int, None) – The remote port of the service.

• local_port (int, None) – The port used locally.

Returns

Whether a port-forward for this remote service exists, or if local port is specified,
whether that port is locally used for port forwarding.

Return type bool

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

is_port_bound(host, port)
Check whether a port on a remote host is accessible.

This method checks to see whether a particular port is active on a given host by attempting to establish a
connection with it.

5.4. Remotes 129

Omniduct Documentation, Release v1.1.19

Parameters

• host (str) – The hostname of the target service.

• port (int) – The port of the target service.

Returns Whether the port is active and accepting connections.

Return type bool

isdir(path)
Check whether a nominated path is directory.

Parameters path (str) – The path for which to check directory nature.

Returns True if folder exists at nominated path, and False otherwise.

Return type bool

isfile(path)
Check whether a nominated path is a file.

Parameters path (str) – The path for which to check file nature.

Returns True if a file exists at nominated path, and False otherwise.

Return type bool

listdir(path=None)
Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and returns the names of child members
as strings. path is interpreted relative to the current working directory (on remote filesytems, this will
typically be the home folder).

Parameters path (str) – The path of the directory from which to enumerate filenames.

Returns The names of all children of the nominated directory.

Return type list<str>

mkdir(path, recursive=True, exist_ok=False)
Create a directory at the given path.

Parameters

• path (str) – The path of the directory to create.

• recursive (bool) – Whether to recursively create any parents of this path if they do
not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir rather that implementing the existence
check using .exists so that they can avoid the overhead associated with multiple operations, which can be
costly in some cases.

open(path, mode=’rt’)
Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing operations. The object returned
is programmatically interchangeable with any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed to the source filesystem when the
file is closed.

Parameters

• path (str) – The path of the file to open.

130 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• mode (str) – All standard Python file modes.

Returns An opened file-like object.

Return type FileSystemFile or file-like

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

path_basename(path)
Extract the last component of a given path.

Components are determined by splitting by self.path_separator. Note that if a path ends with a path
separator, the basename will be the empty string.

Parameters path (str) – The path from which the basename should be extracted.

Returns The extracted basename.

Return type str

path_cwd
The path prefix associated with the current working directory. If not otherwise set, it will be the users’
home directory, and will be the prefix used by all non-absolute path references on this filesystem.

Type str

path_dirname(path)
Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last component), where components are
determined by splitting by self.path_separator.

Parameters path (str) – The path from which the directory path should be extracted.

Returns The extracted directory path.

Return type str

path_home
The path prefix to use as the current users’ home directory. Unless cwd is set, this will be the prefix to use
for all non-absolute path references on this filesystem. This is assumed not to change between connections,
and so will not be updated on client reconnections. Unless global_writes is set to True, this will be the
only folder into which this client is permitted to write.

Type str

path_join(path, *components)
Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all previous path components are discarded,
and the effective base path becomes that component (with ‘~’ expanding to self.path_home). Note that this
method does not simplify paths components like ‘..’. Use self.path_normpath for this purpose.

Parameters

• path (str) – The base path to which components should be joined.

• *components (str) – Any additional components to join to the base path.

5.4. Remotes 131

Omniduct Documentation, Release v1.1.19

Returns The path resulting from joining all of the components nominated, in order, to the base
path.

Return type str

path_normpath(path)
Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path on this filesystem.

Parameters path (str) – The path to normalise (make absolute).

Returns The normalised path.

Return type str

path_separator
The character(s) to use in separating path components. Typically this will be ‘/’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

port_forward(remote_host, remote_port=None, local_port=None)
Initiate a port forward connection.

This method establishes a local port forwarding from a local port local to remote port remote. If local
is None, an available local port is automatically chosen. If the remote port is already forwarded, a new
connection is not established.

Parameters

• remote_host (str) – The hostname of the remote host in form: ‘hostname(:port)’.

• remote_port (int, None) – The remote port of the service.

• local_port (int, None) – The port to use locally (automatically determined if not
specified).

Returns The local port which is port forwarded to the remote service.

Return type int

port_forward_stop(local_port=None, remote_host=None, remote_port=None)
Disconnect an existing port forward connection.

If a local port is provided, then the forwarding (if any) associated with that port is found and stopped;
otherwise any established port forwarding associated with the nominated remote service is stopped.

Parameters

• remote_host (str) – The hostname of the remote host in form: ‘hostname(:port)’.

• remote_port (int, None) – The remote port of the service.

• local_port (int, None) – The port used locally.

port_forward_stopall()
Disconnect all existing port forwarding connections.

132 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

SSHClient Quirks: This method may be overridden by subclasses, but provides the following default
behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

prepare_smartcards()
Prepare smartcards for use in authentication.

This method checks attempts to ensure that the each of the nominated smartcards is available and prepared
for use. This may result in interactive requests for pin confirmation, depending on the card.

Returns

Returns True if at least one smartcard was activated, and False otherwise.

Return type bool

read_only
Whether this filesystem client should be permitted to attempt any write operations.

Type bool

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

remove(path, recursive=False)
Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive is set to True.

Parameters

• path (str) – The path of the file/directory to be removed.

• recursive (bool) – Whether to remove directories and all of their contents.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

5.4. Remotes 133

Omniduct Documentation, Release v1.1.19

Returns A reference to this object.

Return type Duct instance

show_port_forwards()
Print to stdout the active port forwards associated with this client.

showdir(path=None)
Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of a path, which are retrieved using
.dir(path). The exact columns will vary from filesystem to filesystem, depending on the fields returned by
.dir(), but the returned DataFrame is guaranteed to at least have the columns: ‘name’ and ‘type’.

Parameters path (str) – The path of the directory from which to show contents.

Returns A DataFrame representation of the contents of the nominated directory.

Return type pandas.DataFrame

update_host_keys()
Update host keys associated with this remote.

This method updates the SSH host-keys stored in ~/.ssh/known_hosts, allowing one to successfully connect
to hosts when servers are, for example, redeployed and have different host keys.

upload(source, dest=None, overwrite=False, fs=None)
Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on filesystem fs to the path dest on this
filesytem, overwriting any existing file if overwrite is True. This is equivalent to fs.download(. . . , fs=self).

Parameters

• source (str) – The path on the specified filesystem (fs) of the file to upload to this
filesystem. If source ends with ‘/’, and corresponds to a directory, the contents of source
will be copied instead of copying the entire folder.

• dest (str) – The destination path on this filesystem. If not specified, the file/folder is
uploaded into the default path, usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and will throw an error if path does
not resolve to a directory.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient from which to load the file/folder at
source. If not specified, defaults to the local filesystem.

SSHClient Quirks: Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on filesystem fs to the path dest on
this filesytem, overwriting any existing file if overwrite is True. This is equivalent to fs.download(. . . ,
fs=self).

Args:

source (str): The path on the specified filesystem (fs) of the file to upload to this filesystem. If
source ends with ‘/’, and corresponds to a directory, the contents of source will be copied
instead of copying the entire folder.

dest (str): The destination path on this filesystem. If not specified, the file/folder is uploaded
into the default path, usually one’s home folder, on this filesystem. If dest ends with ‘/’ then

134 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

file will be copied into destination folder, and will throw an error if path does not resolve to a
directory.

overwrite (bool): True if the contents of any existing file by the same name should be over-
written, False otherwise.

fs (FileSystemClient): The FileSystemClient from which to load the file/folder at source. If
not specified, defaults to the local filesystem.

SSHClient Quirks: This method is overloaded so that local-to-remote uploads can be handled spe-
cially using scp. Uploads to any non-local filesystem are handled using the standard implementa-
tion.

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

walk(path=None)
Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths that are children of path, one result
for each directory, of form: (<path name>, [<directory 1>, . . .], [<file 1>, . . .])

Parameters path (str) – The path of the directory from which to enumerate contents.

Returns A generator of tuples, each tuple being associated with one directory that is either path
or one of its descendants.

Return type generator<tuple>

ParamikoSSHClient

class omniduct.remotes.ssh_paramiko.ParamikoSSHClient(smartcards=None,
**kwargs)

Bases: omniduct.remotes.base.RemoteClient

An experimental SSH client that uses a paramiko rather than command-line SSH backend. This client has been
fully implemented and should work as is, but until it receives further testing, we recommend using the cli backed
SSH client.

Attributes inherited from RemoteClient:

smartcard (dict): Mapping of smartcard names to system libraries compatible with ssh-add -s ‘<sys-
tem library>’

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

5.4. Remotes 135

Omniduct Documentation, Release v1.1.19

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(smartcards=None, **kwargs)

Parameters smartcards (dict) – Mapping of smartcard names to system libraries compat-
ible with ssh-add -s ‘<system library>’

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

RemoteClient Quirks: Connect to the remote server.

It is not normally necessary for a user to manually call this function, since when a connection is
required, it is automatically created.

Compared to base Duct.connect, this method will automatically catch the first DuctAuthentication-
Error error triggered by Duct.connect, and (if smartcards have been configured) attempt to re-initialise
the smartcards before trying once more.

136 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Returns: Duct instance: A reference to the current object.

dir(path=None)
Retrieve information about the children of a nominated directory.

This method returns a generator over FileSystemFileDesc objects that represent the files/directories that a
present as children of the nominated path. If path is not a directory, an exception is raised. The path is
interpreted as being relative to the current working directory (on remote filesytems, this will typically be
the home folder).

Parameters path (str) – The path to examine for children.

Returns The children of path represented as FileSystemFileDesc objects.

Return type generator<FileSystemFileDesc>

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

download(source, dest=None, overwrite=False, fs=None)
Download files to another filesystem.

This method (recursively) downloads a file/folder from path source on this filesystem to the path dest on
filesytem fs, overwriting any existing file if overwrite is True.

Parameters

• source (str) – The path on this filesystem of the file to download to the nominated
filesystem (fs). If source ends with ‘/’ then contents of the the source directory will be
copied into destination folder, and will throw an error if path does not resolve to a directory.

• dest (str) – The destination path on filesystem (fs). If not specified, the file/folder is
downloaded into the default path, usually one’s home folder. If dest ends with ‘/’, and
corresponds to a directory, the contents of source will be copied instead of copying the
entire folder. If dest is otherwise a directory, an exception will be raised.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient into which the nominated file/folder
source should be downloaded. If not specified, defaults to the local filesystem.

execute(cmd, **kwargs)
Execute a command on the remote server.

Parameters

• cmd (str) – The command to run on the remote associated with this instance.

• **kwargs (dict) – Additional keyword arguments to be passed on to ._execute.

Returns The result of the execution.

Return type SubprocessResults

exists(path)
Check whether nominated path exists on this filesytem.

5.4. Remotes 137

Omniduct Documentation, Release v1.1.19

Parameters path (str) – The path for which to check existence.

Returns

True if file/folder exists at nominated path, and False otherwise.

Return type bool

find(path_prefix=None, **attrs)
Find a file or directory based on certain attributes.

This method searches for files or folders which satisfy certain constraints on the attributes of the file
(as encoded into FileSystemFileDesc). Note that without attribute constraints, this method will function
identically to self.dir.

Parameters

• path_prefix (str) – The path under which files/directories should be found.

• **attrs (dict) – Constraints on the fields of the FileSystemFileDesc objects associated
with this filesystem, as constant values or callable objects (in which case the object will be
called and should return True if attribute value is match, and False otherwise).

Returns

A generator over FileSystemFileDesc objects that are descendents of path_prefix and
which statisfy provided constraints.

Return type generator<FileSystemFileDesc>

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

get_local_uri(uri)
Convert a remote uri to a local one.

This method takes a remote service uri accessible to the remote host and returns a local uri accessible
directly on the local host, establishing any necessary port forwarding in the process.

Parameters uri (str) – The remote uri to be made local.

Returns A local uri that tunnels all traffic to the remote host.

Return type str

global_writes
Whether writes should be permitted outside of home directory. This write-lock is designed to prevent
inadvertent scripted writing in potentially dangerous places.

Type bool

has_port_forward(remote_host=None, remote_port=None, local_port=None)
Check whether a port forward connection exists.

Parameters

138 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• remote_host (str) – The hostname of the remote host in form: ‘hostname(:port)’.

• remote_port (int, None) – The remote port of the service.

• local_port (int, None) – The port used locally.

Returns

Whether a port-forward for this remote service exists, or if local port is specified,
whether that port is locally used for port forwarding.

Return type bool

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

is_port_bound(host, port)
Check whether a port on a remote host is accessible.

This method checks to see whether a particular port is active on a given host by attempting to establish a
connection with it.

Parameters

• host (str) – The hostname of the target service.

• port (int) – The port of the target service.

Returns Whether the port is active and accepting connections.

Return type bool

isdir(path)
Check whether a nominated path is directory.

Parameters path (str) – The path for which to check directory nature.

Returns True if folder exists at nominated path, and False otherwise.

Return type bool

isfile(path)
Check whether a nominated path is a file.

Parameters path (str) – The path for which to check file nature.

Returns True if a file exists at nominated path, and False otherwise.

Return type bool

5.4. Remotes 139

Omniduct Documentation, Release v1.1.19

listdir(path=None)
Retrieve the names of the children of a nomianted directory.

This method inspects the contents of a directory using .dir(path), and returns the names of child members
as strings. path is interpreted relative to the current working directory (on remote filesytems, this will
typically be the home folder).

Parameters path (str) – The path of the directory from which to enumerate filenames.

Returns The names of all children of the nominated directory.

Return type list<str>

mkdir(path, recursive=True, exist_ok=False)
Create a directory at the given path.

Parameters

• path (str) – The path of the directory to create.

• recursive (bool) – Whether to recursively create any parents of this path if they do
not already exist.

Note: exist_ok is passed onto subclass implementations of _mkdir rather that implementing the existence
check using .exists so that they can avoid the overhead associated with multiple operations, which can be
costly in some cases.

open(path, mode=’rt’)
Open a file for reading and/or writing.

This method opens the file at the given path for reading and/or writing operations. The object returned
is programmatically interchangeable with any other Python file-like object, including specification of file
modes. If the file is opened in write mode, changes will only be flushed to the source filesystem when the
file is closed.

Parameters

• path (str) – The path of the file to open.

• mode (str) – All standard Python file modes.

Returns An opened file-like object.

Return type FileSystemFile or file-like

ParamikoSSHClient Quirks: Paramiko offers a complete file-like abstraction for files opened over sftp,
so we use that abstraction rather than a FileSystemFile. Results should be indistinguishable.

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

path_basename(path)
Extract the last component of a given path.

Components are determined by splitting by self.path_separator. Note that if a path ends with a path
separator, the basename will be the empty string.

Parameters path (str) – The path from which the basename should be extracted.

140 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Returns The extracted basename.

Return type str

path_cwd
The path prefix associated with the current working directory. If not otherwise set, it will be the users’
home directory, and will be the prefix used by all non-absolute path references on this filesystem.

Type str

path_dirname(path)
Extract the parent directory for provided path.

This method returns the entire path except for the basename (the last component), where components are
determined by splitting by self.path_separator.

Parameters path (str) – The path from which the directory path should be extracted.

Returns The extracted directory path.

Return type str

path_home
The path prefix to use as the current users’ home directory. Unless cwd is set, this will be the prefix to use
for all non-absolute path references on this filesystem. This is assumed not to change between connections,
and so will not be updated on client reconnections. Unless global_writes is set to True, this will be the
only folder into which this client is permitted to write.

Type str

path_join(path, *components)
Generate a new path by joining together multiple paths.

If any component starts with self.path_separator or ‘~’, then all previous path components are discarded,
and the effective base path becomes that component (with ‘~’ expanding to self.path_home). Note that this
method does not simplify paths components like ‘..’. Use self.path_normpath for this purpose.

Parameters

• path (str) – The base path to which components should be joined.

• *components (str) – Any additional components to join to the base path.

Returns The path resulting from joining all of the components nominated, in order, to the base
path.

Return type str

path_normpath(path)
Normalise a pathname.

This method returns the normalised (absolute) path corresponding to path on this filesystem.

Parameters path (str) – The path to normalise (make absolute).

Returns The normalised path.

Return type str

path_separator
The character(s) to use in separating path components. Typically this will be ‘/’.

Type str

5.4. Remotes 141

Omniduct Documentation, Release v1.1.19

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

port_forward(remote_host, remote_port=None, local_port=None)
Initiate a port forward connection.

This method establishes a local port forwarding from a local port local to remote port remote. If local
is None, an available local port is automatically chosen. If the remote port is already forwarded, a new
connection is not established.

Parameters

• remote_host (str) – The hostname of the remote host in form: ‘hostname(:port)’.

• remote_port (int, None) – The remote port of the service.

• local_port (int, None) – The port to use locally (automatically determined if not
specified).

Returns The local port which is port forwarded to the remote service.

Return type int

port_forward_stop(local_port=None, remote_host=None, remote_port=None)
Disconnect an existing port forward connection.

If a local port is provided, then the forwarding (if any) associated with that port is found and stopped;
otherwise any established port forwarding associated with the nominated remote service is stopped.

Parameters

• remote_host (str) – The hostname of the remote host in form: ‘hostname(:port)’.

• remote_port (int, None) – The remote port of the service.

• local_port (int, None) – The port used locally.

port_forward_stopall()
Disconnect all existing port forwarding connections.

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

ParamikoSSHClient Quirks: This method may be overridden by subclasses, but provides the following
default behaviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

142 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• Ensures value of self.port is an integer (or None).

prepare_smartcards()
Prepare smartcards for use in authentication.

This method checks attempts to ensure that the each of the nominated smartcards is available and prepared
for use. This may result in interactive requests for pin confirmation, depending on the card.

Returns

Returns True if at least one smartcard was activated, and False otherwise.

Return type bool

read_only
Whether this filesystem client should be permitted to attempt any write operations.

Type bool

reconnect()
Disconnects, and then reconnects, this client.

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

remove(path, recursive=False)
Remove file(s) at a nominated path.

Directories (and their contents) will not be removed unless recursive is set to True.

Parameters

• path (str) – The path of the file/directory to be removed.

• recursive (bool) – Whether to remove directories and all of their contents.

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

show_port_forwards()
Print to stdout the active port forwards associated with this client.

showdir(path=None)
Return a dataframe representation of a directory.

This method returns a pandas.DataFrame representation of the contents of a path, which are retrieved using
.dir(path). The exact columns will vary from filesystem to filesystem, depending on the fields returned by
.dir(), but the returned DataFrame is guaranteed to at least have the columns: ‘name’ and ‘type’.

Parameters path (str) – The path of the directory from which to show contents.

Returns A DataFrame representation of the contents of the nominated directory.

Return type pandas.DataFrame

5.4. Remotes 143

Omniduct Documentation, Release v1.1.19

upload(source, dest=None, overwrite=False, fs=None)
Upload files from another filesystem.

This method (recursively) uploads a file/folder from path source on filesystem fs to the path dest on this
filesytem, overwriting any existing file if overwrite is True. This is equivalent to fs.download(. . . , fs=self).

Parameters

• source (str) – The path on the specified filesystem (fs) of the file to upload to this
filesystem. If source ends with ‘/’, and corresponds to a directory, the contents of source
will be copied instead of copying the entire folder.

• dest (str) – The destination path on this filesystem. If not specified, the file/folder is
uploaded into the default path, usually one’s home folder, on this filesystem. If dest ends
with ‘/’ then file will be copied into destination folder, and will throw an error if path does
not resolve to a directory.

• overwrite (bool) – True if the contents of any existing file by the same name should
be overwritten, False otherwise.

• fs (FileSystemClient) – The FileSystemClient from which to load the file/folder at
source. If not specified, defaults to the local filesystem.

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,
then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

walk(path=None)
Explore the filesystem tree starting at a nominated path.

This method returns a generator which recursively walks over all paths that are children of path, one result
for each directory, of form: (<path name>, [<directory 1>, . . .], [<file 1>, . . .])

Parameters path (str) – The path of the directory from which to enumerate contents.

Returns A generator of tuples, each tuple being associated with one directory that is either path
or one of its descendants.

Return type generator<tuple>

5.5 Caches

All remote clients are expected to be subclasses of Cache, and so will share a common API. Protocol implementations
are also free to add extra methods, which are documented in the “Subclass Reference” section below.

5.5.1 Common API

omniduct.caches.base.cached_method(key, namespace=<function <lambda>>, cache=<function
<lambda>>, use_cache=<function <lambda>>, re-
new=<function <lambda>>, serializer=<function
<lambda>>, metadata=<function <lambda>>)

Wrap a method of a Duct class and add caching capabilities.

144 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

All arguments of this function are expected to be functions taking two arguments: a reference to current instance
of the class (self) and a dictionary of arguments passed to the function (kwargs).

Parameters

• key (function -> str) – The key under which the value returned by the wrapped
function should be stored.

• namespace (function -> str) – The namespace under which the key should be
stored (default: “<duct class name>.<duct instance name>”).

• cache (function -> Cache) – The instance of cache via which to store the output of
the wrapped function (default: self.cache).

• use_cache (function -> bool) – Whether or not to use the caching functionality
(default: True).

• renew (function -> bool) – Whether to renew the stored cache, overriding if a value
has already been stored (default: False).

• serializer (function -> Serializer) – The Serializer subclass to use when
storing the return object (default: PickleSerializer).

• metadata (function -> None, dict) – A dictionary of additional metadata to be
stored alongside the wrapped function’s output (default: None).

Returns

The (potentially cached) object returned when calling the wrapped function.

Return type object

Raises Exception – If cache fails to store the output of the wrapped function, and the omniduct
configuration key cache_fail_hard is True, then the underlying exceptions raised by the Cache
instance will be reraised.

class omniduct.caches.base.Cache(**kwargs)
Bases: omniduct.duct.Duct

An abstract class providing the common API for all cache clients.

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

5.5. Caches 145

Omniduct Documentation, Release v1.1.19

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

__init__(**kwargs)

protocol (str, None): Name of protocol (used by Duct registries to inform Duct instances of how they
were instantiated).

name (str, None): The name to used by the Duct instance (defaults to class name if not specified).

registry (DuctRegistry, None): The registry to use to lookup remote and/or cache instance specified
by name.

remote (str, RemoteClient): The remote by which the ducted service should be contacted.

host (str): The hostname of the service to be used by this client. port (int): The port of the service to be
used by this client. username (str, bool, None): The username to authenticate with if necessary.

If True, then users will be prompted at runtime for credentials.

password (str, bool, None): The password to authenticate with if necessary. If True, then users will
be prompted at runtime for credentials.

cache(Cache, None): The cache client to be attached to this instance. Cache will only used by spe-
cific methods as configured by the client.

cache_namespace(str, None): The namespace to use by default when writing to the cache.

set(key, value, namespace=None, serializer=None, metadata=None)
Set the value of a key.

Parameters

• key (str) – The key for which value should be stored.

• value (object) – The value to be stored.

• namespace (str, None) – The namespace to be used.

• serializer (Serializer) – The Serializer subclass to use for the serialisation of
value into the cache. (default=PickleSerializer)

• metadata (dict, None) – Additional metadata to be stored with the value in the
cache. Values must be serializable via yaml.safe_dump.

146 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

set_metadata(key, metadata, namespace=None, replace=False)
Set the metadata associated with a stored key, creating the key if it is missing.

Parameters

• key (str) – The key for which value should be stored.

• metadata (dict, None) – Additional/override metadata to be stored for key in the
cache. Values must be serializable via yaml.safe_dump.

• namespace (str, None) – The namespace to be used.

• replace (bool) – Whether the provided metadata should entirely replace any existing
metadata, or just update it. (default=False)

get(key, namespace=None, serializer=None)
Retrieve the value associated with the nominated key from the cache.

Parameters

• key (str) – The key for which value should be retrieved.

• namespace (str, None) – The namespace to be used.

• serializer (Serializer) – The Serializer subclass to use for the deserialisation of
value from the cache. (default=PickleSerializer)

Returns The (appropriately deserialized) object stored in the cache.

Return type object

get_bytecount(key, namespace=None)
Retrieve the number of bytes used by a stored key.

This bytecount may or may not include metadata storage, depending on the backend.

Parameters

• key (str) – The key for which to extract the bytecount.

• namespace (str, None) – The namespace to be used.

Returns

The number of bytes used by the stored value associated with the nominated key and
namespace.

Return type int

get_metadata(key, namespace=None)
Retrieve metadata associated with the nominated key from the cache.

Parameters

• key (str) – The key for which to extract metadata.

• namespace (str, None) – The namespace to be used.

Returns The metadata associated with this namespace and key.

Return type dict

unset(key, namespace=None)
Remove the nominated key from the cache.

Parameters

• key (str) – The key which should be unset.

5.5. Caches 147

Omniduct Documentation, Release v1.1.19

• namespace (str, None) – The namespace to be used.

unset_namespace(namespace=None)
Remove an entire namespace from the cache.

Parameters namespace (str, None) – The namespace to be removed.

namespaces
A list of the namespaces stored in the cache.

Type list <str,None>

has_namespace(namespace=None)
Check whether the cache has the nominated namespace.

Parameters namespace (str,None) – The namespace for which to check for existence.

Returns Whether the cache has the nominated namespaces.

Return type bool

keys(namespace=None)
Collect a list of all the keys present in the nominated namespaces.

Parameters namespace (str,None) – The namespace from which to extract all of the keys.

Returns The keys stored in the cache for the nominated namespace.

Return type list<str>

has_key(key, namespace=None)
Check whether the cache as a nominated key.

Parameters

• key (str) – The key for which to check existence.

• namespace (str,None) – The namespace from which to extract all of the keys.

Returns

Whether the cache has a value for the nominated namespace and key.

Return type bool

get_total_bytecount(namespaces=None)
Retrieve the total number of bytes used by the cache.

This method iterates over all (nominated) namespaces and the keys therein, summing the result of
.get_bytecount(. . .) on each.

Parameters namespaces (list<str,None>) – The namespaces to which the bytecount
should be restricted.

Returns The total number of bytes used by the nominated namespaces.

Return type int

describe(namespaces=None)
Return a pandas DataFrame showing all keys and their metadata.

Parameters namespaces (list<str,None>) – The namespaces to which the summary
should be restricted.

Returns

148 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

A representation of keys in the cache. Will include at least the following columns:
[‘bytes’, ‘namespace’, ‘key’, ‘created’, ‘last_accessed’]. Any additional metadata for
keys will be appended to these columns.

Return type pandas.DataFrame

prune(namespaces=None, max_age=None, max_bytes=None, total_bytes=None, total_count=None)
Remove keys from the cache in order to satisfy nominated constraints.

Parameters

• namespaces (list<str, None>) – The namespaces to consider for pruning.

• max_age (None, int, timedelta, relativedelta, date, datetime)
– The number of days, a timedelta, or a relativedelta, indicating the maximum age of
items in the cache (based on last accessed date). Deltas are expected to be positive.

• max_bytes (None, int) – The maximum number of bytes for each key, allowing the
pruning of larger keys.

• total_bytes (None, int) – The total number of bytes for the entire cache. Keys
will be removed from least recently accessed to most recently accessed until the constraint
is satisfied. This constraint will be applied after max_age and max_bytes.

• total_count (None, int) – The maximum number of items to keep in the cache.
Keys will be removed from least recently accessed to most recently accessed until the
constraint is satisfied. This constraint will be applied after max_age and max_bytes.

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

prepare()
Prepare a Duct subclass for use (if not already prepared).

5.5. Caches 149

Omniduct Documentation, Release v1.1.19

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

Cache Quirks: This method may be overridden by subclasses, but provides the following default be-
haviour:

• Ensures self.registry, self.remote and self.cache values are instances of the right types.

• It replaces string values of self.remote and self.cache with remotes and caches looked up using
self.registry.lookup.

• It looks through each of the fields nominated in self.prepared_fields and, if the corresponding
value is callable, sets the value of that field to result of calling that value with a reference to self.
By default, prepared_fields contains ‘_host’, ‘_port’, ‘_username’, and ‘_password’.

• Ensures value of self.port is an integer (or None).

5.5.2 Subclass Reference

For comprehensive documentation on any particular subclass, please refer to one of the below documents.

FileSystemCache

class omniduct.caches.filesystem.FileSystemCache(**kwargs)
Bases: omniduct.caches.base.Cache

An implementation of Cache that wraps around a FilesystemClient.

Attributes inherited from Duct:

protocol (str): The name of the protocol for which this instance was created (especially useful if a
Duct subclass supports multiple protocols).

name (str): The name given to this Duct instance (defaults to class name).

host (str): The host name providing the service (will be ‘127.0.0.1’, if service is port forwarded from
remote; use ._host to see remote host).

port (int): The port number of the service (will be the port-forwarded local port, if relevant; for re-
mote port use ._port).

username (str, bool): The username to use for the service. password (str, bool): The password to use for
the service. registry (None, omniduct.registry.DuctRegistry): A reference to a

DuctRegistry instance for runtime lookup of other services.

remote (None, omniduct.remotes.base.RemoteClient): A reference to a RemoteClient instance to
manage connections to remote services.

cache (None, omniduct.caches.base.Cache): A reference to a Cache instance to add support for
caching, if applicable.

connection_fields (tuple<str>, list<str>): A list of instance attributes to monitor for changes, where-
upon the Duct instance should automatically disconnect. By default, the following attributes are
monitored: ‘host’, ‘port’, ‘remote’, ‘username’, and ‘password’.

150 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

prepared_fields (tuple<str>, list<str>): A list of instance attributes to be populated (if their values are
callable) when the instance first connects to a service. Refer to Duct.prepare and Duct._prepare for
more details. By default, the following attributes are prepared: ‘_host’, ‘_port’, ‘_username’, and
‘_password’.

Additional attributes including host, port, username and password are documented inline.

Class Attributes:

AUTO_LOGGING_SCOPE (bool): Whether this class should be used by omniduct logging
code as a “scope”. Should be overridden by subclasses as appropriate.

DUCT_TYPE (Duct.Type): The type of Duct service that is provided by this Duct instance.
Should be overridden by subclasses as appropriate.

PROTOCOLS (list<str>): The name(s) of any protocols that should be associated with this
class. Should be overridden by subclasses as appropriate.

class Type
Bases: enum.Enum

The Duct.Type enum specifies all of the permissible values of Duct.DUCT_TYPE. Also determines the
order in which ducts are loaded by DuctRegistry.

__init__(**kwargs)

protocol (str, None): Name of protocol (used by Duct registries to inform Duct instances of how they
were instantiated).

name (str, None): The name to used by the Duct instance (defaults to class name if not specified).

registry (DuctRegistry, None): The registry to use to lookup remote and/or cache instance specified
by name.

remote (str, RemoteClient): The remote by which the ducted service should be contacted.

host (str): The hostname of the service to be used by this client. port (int): The port of the service to be
used by this client. username (str, bool, None): The username to authenticate with if necessary.

If True, then users will be prompted at runtime for credentials.

password (str, bool, None): The password to authenticate with if necessary. If True, then users will
be prompted at runtime for credentials.

cache(Cache, None): The cache client to be attached to this instance. Cache will only used by spe-
cific methods as configured by the client.

cache_namespace(str, None): The namespace to use by default when writing to the cache.

connect()
Connect to the service backing this client.

It is not normally necessary for a user to manually call this function, since when a connection is required,
it is automatically created.

Returns A reference to the current object.

Return type Duct instance

describe(namespaces=None)
Return a pandas DataFrame showing all keys and their metadata.

Parameters namespaces (list<str,None>) – The namespaces to which the summary
should be restricted.

5.5. Caches 151

Omniduct Documentation, Release v1.1.19

Returns

A representation of keys in the cache. Will include at least the following columns:
[‘bytes’, ‘namespace’, ‘key’, ‘created’, ‘last_accessed’]. Any additional metadata for
keys will be appended to these columns.

Return type pandas.DataFrame

disconnect()
Disconnect this client from backing service.

This method is automatically called during reconnections and/or at Python interpreter shutdown. It first
calls Duct._disconnect (which should be implemented by subclasses) and then notifies the RemoteClient
subclass, if present, to stop port-forwarding the remote service.

Returns A reference to this object.

Return type Duct instance

classmethod for_protocol(protocol)
Retrieve a Duct subclass for a given protocol.

Parameters protocol (str) – The protocol of interest.

Returns

The appropriate class for the provided, partially constructed with the protocol keyword
argument set appropriately.

Return type functools.partial object

Raises DuctProtocolUnknown – If no class has been defined that offers the named protocol.

get(key, namespace=None, serializer=None)
Retrieve the value associated with the nominated key from the cache.

Parameters

• key (str) – The key for which value should be retrieved.

• namespace (str, None) – The namespace to be used.

• serializer (Serializer) – The Serializer subclass to use for the deserialisation of
value from the cache. (default=PickleSerializer)

Returns The (appropriately deserialized) object stored in the cache.

Return type object

get_bytecount(key, namespace=None)
Retrieve the number of bytes used by a stored key.

This bytecount may or may not include metadata storage, depending on the backend.

Parameters

• key (str) – The key for which to extract the bytecount.

• namespace (str, None) – The namespace to be used.

Returns

The number of bytes used by the stored value associated with the nominated key and
namespace.

Return type int

152 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

get_metadata(key, namespace=None)
Retrieve metadata associated with the nominated key from the cache.

Parameters

• key (str) – The key for which to extract metadata.

• namespace (str, None) – The namespace to be used.

Returns The metadata associated with this namespace and key.

Return type dict

get_total_bytecount(namespaces=None)
Retrieve the total number of bytes used by the cache.

This method iterates over all (nominated) namespaces and the keys therein, summing the result of
.get_bytecount(. . .) on each.

Parameters namespaces (list<str,None>) – The namespaces to which the bytecount
should be restricted.

Returns The total number of bytes used by the nominated namespaces.

Return type int

has_key(key, namespace=None)
Check whether the cache as a nominated key.

Parameters

• key (str) – The key for which to check existence.

• namespace (str,None) – The namespace from which to extract all of the keys.

Returns

Whether the cache has a value for the nominated namespace and key.

Return type bool

has_namespace(namespace=None)
Check whether the cache has the nominated namespace.

Parameters namespace (str,None) – The namespace for which to check for existence.

Returns Whether the cache has the nominated namespaces.

Return type bool

host
The host name providing the service, or ‘127.0.0.1’ if self.remote is not None, whereupon the service will
be port-forwarded locally. You can view the remote hostname using duct._host, and change the remote
host at runtime using: duct.host = ‘<host>’.

Type str

is_connected()
Check whether this Duct instances is currently connected.

This method checks to see whether a Duct instance is currently connected. This is performed by verifying
that the remote host and port are still accessible, and then by calling Duct._is_connected, which should be
implemented by subclasses.

Returns Whether this Duct instance is currently connected.

Return type bool

5.5. Caches 153

Omniduct Documentation, Release v1.1.19

keys(namespace=None)
Collect a list of all the keys present in the nominated namespaces.

Parameters namespace (str,None) – The namespace from which to extract all of the keys.

Returns The keys stored in the cache for the nominated namespace.

Return type list<str>

namespaces
A list of the namespaces stored in the cache.

Type list <str,None>

password
Some services require authentication in order to connect to the service, in which case the appropriate
password can be specified. If True was provided at instantiation, you will be prompted to type your
password at runtime when necessary. If False was provided, then None will be returned. You can specify
a different password at runtime using: duct.password = ‘<password>’.

Type str

port
The local port for the service. If self.remote is not None, the port will be port-forwarded from the remote
host. To see the port used on the remote host refer to duct._port. You can change the remote port at runtime
using: duct.port = <port>.

Type int

prepare()
Prepare a Duct subclass for use (if not already prepared).

This method is called before the value of any of the fields referenced in self.connection_fields are retrieved.
The fields include, by default: ‘host’, ‘port’, ‘remote’, ‘cache’, ‘username’, and ‘password’. Subclasses
may add or subtract from these special fields.

When called, it first checks whether the instance has already been prepared, and if not calls _prepare and
then records that the instance has been successfully prepared.

prune(namespaces=None, max_age=None, max_bytes=None, total_bytes=None, total_count=None)
Remove keys from the cache in order to satisfy nominated constraints.

Parameters

• namespaces (list<str, None>) – The namespaces to consider for pruning.

• max_age (None, int, timedelta, relativedelta, date, datetime)
– The number of days, a timedelta, or a relativedelta, indicating the maximum age of
items in the cache (based on last accessed date). Deltas are expected to be positive.

• max_bytes (None, int) – The maximum number of bytes for each key, allowing the
pruning of larger keys.

• total_bytes (None, int) – The total number of bytes for the entire cache. Keys
will be removed from least recently accessed to most recently accessed until the constraint
is satisfied. This constraint will be applied after max_age and max_bytes.

• total_count (None, int) – The maximum number of items to keep in the cache.
Keys will be removed from least recently accessed to most recently accessed until the
constraint is satisfied. This constraint will be applied after max_age and max_bytes.

reconnect()
Disconnects, and then reconnects, this client.

154 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

Note: This is equivalent to duct.disconnect().connect().

Returns A reference to this object.

Return type Duct instance

reset()
Reset this Duct instance to its pre-preparation state.

This method disconnects from the service, resets any temporary authentication and restores the values of
the attributes listed in prepared_fields to their values as of when Duct.prepare was called.

Returns A reference to this object.

Return type Duct instance

set(key, value, namespace=None, serializer=None, metadata=None)
Set the value of a key.

Parameters

• key (str) – The key for which value should be stored.

• value (object) – The value to be stored.

• namespace (str, None) – The namespace to be used.

• serializer (Serializer) – The Serializer subclass to use for the serialisation of
value into the cache. (default=PickleSerializer)

• metadata (dict, None) – Additional metadata to be stored with the value in the
cache. Values must be serializable via yaml.safe_dump.

set_metadata(key, metadata, namespace=None, replace=False)
Set the metadata associated with a stored key, creating the key if it is missing.

Parameters

• key (str) – The key for which value should be stored.

• metadata (dict, None) – Additional/override metadata to be stored for key in the
cache. Values must be serializable via yaml.safe_dump.

• namespace (str, None) – The namespace to be used.

• replace (bool) – Whether the provided metadata should entirely replace any existing
metadata, or just update it. (default=False)

unset(key, namespace=None)
Remove the nominated key from the cache.

Parameters

• key (str) – The key which should be unset.

• namespace (str, None) – The namespace to be used.

unset_namespace(namespace=None)
Remove an entire namespace from the cache.

Parameters namespace (str, None) – The namespace to be removed.

username
Some services require authentication in order to connect to the service, in which case the appropriate
username can be specified. If not specified at instantiation, your local login name will be used. If True
was provided, you will be prompted to type your username at runtime as necessary. If False was provided,

5.5. Caches 155

Omniduct Documentation, Release v1.1.19

then None will be returned. You can specify a different username at runtime using: duct.username =
‘<username>’.

Type str

5.6 Registry Management

Omniduct provides some simple tooling to help manage ensembles of Duct configurations. The primary tool is the
DuctRegistry, which manages Duct instances and allows them to communicate with each other.

For some simple examples on its use, please refer to the Quickstart.

class omniduct.registry.DuctRegistry(config=None)
Bases: object

A convenient registry for Duct instances.

This class provides a simple interface to a pool of configured services, allowing convenient lookups of available
services and the creation of new ones. It also allows for the batch creation of services from a shared configura-
tion, which is especially useful in a company deployment.

__init__(config=None)

Parameters config (iterable, dict, str, None) – Refer to .import_from_config
for more details (default: None).

register(duct, name=None, override=False, register_magics=True)
Register an existing Duct instance into the registry.

Names of ducts can consist of any valid Python identifier, and multiple names can be provided as a comma
separated list in which case the names will be aliases referring to the same Duct instance. Keep in mind
that any name must uniquely identify one Duct instance.

Parameters

• duct (Duct) – The Duct instance to be registered.

• name (str) – An optional name to use when registering. If not provided this will fall
back to duct.name. If neither is configured, an error will be thrown. Name can be a
comma-separated list of names, in which case the names are aliases and will point to the
same Duct instance.

• override (bool) – Whether to override any existing Duct instance of the same name.
If False, any overrides will result in an exception.

Returns The Duct instance being registered.

Return type Duct

new(name, protocol, override=False, register_magics=True, **kwargs)
Create a new service and register it into the registry.

Parameters

• name (str) – The name (or names) of the target service. If multiple aliases are to be
used, names should be a comma separated list. See .register for more details.

• protocol (str) – The protocol of the new service.

• override (bool) – Whether to override any existing Duct instance of the same name.
If False, any overrides will result in an exception.

156 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

• register_magics (bool) – Whether to register the magics if running in and IPython
session (default: True).

• **kwargs (dict) – Additional arguments to pass to the constructor of the class associ-
ated with the nominated protocol.

Returns The Duct instance registered into the registry.

Return type Duct

names
The names of all ducts in the registry.

Type list

lookup(name, kind=None)
Look up an existing registered Duct by name and (optionally) kind.

Parameters

• name (str) – The name of the Duct instance.

• kind (str, Duct.Type) – The kind of Duct to which the lookup should be restricted.

Returns The looked up Duct instance.

Return type Duct

Raises DuctNotFound – If no Duct can be found for requested name and/or type.

populate_namespace(namespace=None, names=None, kinds=None)
Populate a nominated namespace with references to a subset of ducts.

While a registry object is a great way to store and configure Duct instances, it is sometimes desirable
to surface frequently used instances in other more convenient namespaces (such as the globals of your
module).

Parameters

• namespace (dict, None) – The namespace to populate. If using from a module you
can pass globals(). If None, a new dictionary is created, populated and then returned.

• names (list<str>, None) – The names to include in the population. If not specified
then all names will be exported.

• kinds (list<str>, None) – The kinds of ducts to include in the population. If not
specified, all kinds will be exported.

Returns The populated namespace.

Return type dict

get_proxy(by_kind=True)
Return a structured proxy object for easy exploration of services.

This method returns a proxy object to the registry upon which the Duct instances are available as attributes.
This object is also by default structured such that one first accesses an attribute associated with a kind,
which makes larger collections of services more easily navigatable.

For example, if you have DatabaseClient subclass registered as ‘my_service’, you could access it on the
proxy using: >>> proxy = registry.get_proxy(by_kind=True) >>> proxy.databases.my_service

Parameters by_kind (bool) – Whether to nest proxy of Duct instances by kind.

Returns The proxy object.

Return type ServicesProxy

5.6. Registry Management 157

Omniduct Documentation, Release v1.1.19

register_from_config(config, override=False)
Register a collection of Duct service configurations.

The configuration format must be one of the following: - An iterable sequence of dictionaries containing
a mapping between the

keyword arguments required to instantiate the Duct subclass.

• A dictionary mapping names of Duct instances to dictionaries of keyword arguments.

• A dictionary mapping Duct types (‘databases’, ‘filesystems’, etc) to mappings like those immediately
above.

• A string YAML representation of one of the above (with at least one newline character).

• A string filename containing such a YAML representation.

There are three special keyword arguments that are required by the DuctRegistry instance: - name: Should
be present only in the configuration dictionary when

config is provided as an iterable sequence of dictionaries.

• protocol: Which specifies which Duct subclass to fetch. Failure to correctly set this will result in a
warning and an ignoring of this configuration.

• register_magics (optional): A boolean flag indicating whether to register any magics defined by this
Duct class (default: True).

Parameters

• config (iterable, dict, str, None) – A configuration specified in one of the
above described formats.

• override (bool) – Whether to override any existing Duct instance of the same name(s).
If False, any overrides will result in an exception.

Omniduct’s API has been designed to ensure that ducts which provide the same type of service (i.e. database querying,
filesystem grokking, etc) also provide a programmatically similar API. As such, all protocol implementations are
subclasses of a generic abstract class Duct via a protocol type-specific subclass (such as DatabaseClient for database
protocols). This ensures that the core API is consistent between all instances of the same protocol type. These type-
specific classes may also derive from omniduct.utils.magics.MagicsProvider, and provide IPython magic functions to
provide convenient access to these protocols in IPython sessions. Protocol implementations can also have protocol-
specific additions to the core API.

The Duct class provides the scaffolding for connection management and other “magic” such as the automatic creation
of a registry of the protocols handled by subclasses. This class is described in more detail in Core Classes, along with
the MagicsProvider class.

The protocol-specific subclasses of Duct that provide the shared APIs (including any IPython magics) for each protocol
type are detailed in dedicated pages; i.e. Databases, Filesystems, Remotes, and Caches.

Lastly, utility classes and methods are provided to help manage registries of connections to various services. These
are documented in Registry Management.

Note Omniduct does not guarantee a stable API between major versions. However, we do commit to
ensuring that version x.y.z of omniduct is API forward-compatible with all future minor versions
x.y.*. While there is no guarantee of APIs remaining fixed between major versions, we expect that
in practice these breaking API changes will be small, and in all cases will be documented in the
release notes. As such, if you are using Omniduct in a production environment, we recommend

158 Chapter 5. API & IPython Magics

Omniduct Documentation, Release v1.1.19

installing using a static pinned version or something like omniduct>=1.2.3<1.3, where 1.2.3 is the
version found to work well in your environment.

5.6. Registry Management 159

Omniduct Documentation, Release v1.1.19

160 Chapter 5. API & IPython Magics

CHAPTER 6

Extensions and Plug-ins

Extending Omniduct to support additional services is relatively straightforward, requiring you only to subclass Duct
or one of the protocol specific common API subclasses (a template for each of these is provided as a stub.py file in the
appropriate subpackage, e.g. https://github.com/airbnb/omniduct/blob/master/omniduct/databases/stub.py).

As soon as your subclass is in memory, it will integrate automatically with the rest of the Omniduct ecosystem, and be
instantiatable by protocol name through the DuctRegistry or Duct.for_protocol() systems.

If you would like to contribute this extension into the upstream Omniduct library, we welcome your contribution. This
would entail simply adding a module containing your subclass to the appropriate Omniduct subpackage, and then (if it
is stable and ready for broad usage) importing that subpackage from omniduct.protocols. Once your module is merged
into the master branch of Omniduct, maintainance will fall to the core Omniduct maintainers, though you are of course
welcome to continue submitting patches to improve it or any other aspect of Omniduct.

If you need further assistance, please do not hesitate to open an issue on our issue tracker: https://github.com/airbnb/
omniduct/issues .

161

https://github.com/airbnb/omniduct/blob/master/omniduct/databases/stub.py
https://github.com/airbnb/omniduct/issues
https://github.com/airbnb/omniduct/issues

Omniduct Documentation, Release v1.1.19

162 Chapter 6. Extensions and Plug-ins

CHAPTER 7

Contributions

Contributions of any nature are welcome, including software patches, improvements to documentation, bug reports, or
feature requests. One of the most useful contributions will undoubtedly be support for new protocols, and so we look
forward to seeing your patches to support your favourite services.

For documentation on how to contribute support for new protocols, please refer to Extensions and Plug-ins.

Omniduct is an extensible Python library that provides uniform interfaces to a wide variety of (potentially) remote
data providers such as databases, filesystems, and REST services. Its primary objective is to simplify the process of
collecting and analysing data in a heterogeneous data environment, and is suitable for deployment in interactive and
production environments. To that end, it offers the following features:

• A generic plugin-based programmatic API to access data in a consistent manner across different services (see
Supported protocols).

• A framework for lazily connecting to data sources and maintaining these connections during the entire lifetime
of the relevant Python session.

• Automatic port forwarding of remote services over SSH where connections cannot be made directly.

• Convenient IPython magic functions for interfacing with data providers from within IPython and Jupyter Note-
book sessions.

• Utility classes and methods to assist in maintaining registries of useful services.

Omniduct has been designed such that it is convenient to use directly (each user can configure their own service
definitions) or via another package (which can create a library of pre-defined services, such as for a company). For
more information on how to deploy omniduct refer to Deployment.

163

Omniduct Documentation, Release v1.1.19

164 Chapter 7. Contributions

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

165

Omniduct Documentation, Release v1.1.19

166 Chapter 8. Indices and tables

Python Module Index

o
omniduct.caches.base, 144
omniduct.filesystems.base, 90
omniduct.registry, 156

167

Omniduct Documentation, Release v1.1.19

168 Python Module Index

Index

Symbols
__init__() (omniduct.caches.base.Cache method),

146
__init__() (omniduct.caches.filesystem.FileSystemCache

method), 151
__init__() (omniduct.databases.base.DatabaseClient

method), 16
__init__() (omniduct.databases.druid.DruidClient

method), 28
__init__() (omniduct.databases.hiveserver2.HiveServer2Client

method), 38
__init__() (omniduct.databases.neo4j.Neo4jClient

method), 49
__init__() (omniduct.databases.presto.PrestoClient

method), 60
__init__() (omniduct.databases.pyspark.PySparkClient

method), 70
__init__() (omniduct.databases.sqlalchemy.SQLAlchemyClient

method), 81
__init__() (omniduct.duct.Duct method), 12
__init__() (omniduct.filesystems.base.FileSystemClient

method), 91
__init__() (omniduct.filesystems.base.FileSystemFile

method), 96
__init__() (omniduct.filesystems.local.LocalFsClient

method), 98
__init__() (omniduct.filesystems.s3.S3Client

method), 105
__init__() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 112
__init__() (omniduct.registry.DuctRegistry method),

156
__init__() (omniduct.remotes.base.RemoteClient

method), 119
__init__() (omniduct.remotes.ssh.SSHClient

method), 126
__init__() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 136
_prepare() (omniduct.duct.Duct method), 13

C
Cache (class in omniduct.caches.base), 145
cached_method() (in module omniduct.caches.base),

144
connect() (omniduct.caches.base.Cache method), 149
connect() (omniduct.caches.filesystem.FileSystemCache

method), 151
connect() (omniduct.databases.base.DatabaseClient

method), 23
connect() (omniduct.databases.druid.DruidClient

method), 28
connect() (omniduct.databases.hiveserver2.HiveServer2Client

method), 38
connect() (omniduct.databases.neo4j.Neo4jClient

method), 49
connect() (omniduct.databases.presto.PrestoClient

method), 60
connect() (omniduct.databases.pyspark.PySparkClient

method), 70
connect() (omniduct.databases.sqlalchemy.SQLAlchemyClient

method), 81
connect() (omniduct.duct.Duct method), 14
connect() (omniduct.filesystems.base.FileSystemClient

method), 95
connect() (omniduct.filesystems.local.LocalFsClient

method), 98
connect() (omniduct.filesystems.s3.S3Client method),

105
connect() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 112
connect() (omniduct.remotes.base.RemoteClient

method), 120
connect() (omniduct.remotes.ssh.SSHClient method),

126
connect() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 136

D
DatabaseClient (class in omniduct.databases.base),

169

Omniduct Documentation, Release v1.1.19

15
dataframe_to_table() (om-

niduct.databases.base.DatabaseClient
method), 21

dataframe_to_table() (om-
niduct.databases.druid.DruidClient method),
28

dataframe_to_table() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 39

dataframe_to_table() (om-
niduct.databases.neo4j.Neo4jClient method),
50

dataframe_to_table() (om-
niduct.databases.presto.PrestoClient method),
60

dataframe_to_table() (om-
niduct.databases.pyspark.PySparkClient
method), 71

dataframe_to_table() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 81

describe() (omniduct.caches.base.Cache method),
148

describe() (omniduct.caches.filesystem.FileSystemCache
method), 151

dir() (omniduct.filesystems.base.FileSystemClient
method), 93

dir() (omniduct.filesystems.local.LocalFsClient
method), 98

dir() (omniduct.filesystems.s3.S3Client method), 105
dir() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 112
dir() (omniduct.remotes.base.RemoteClient method),

121
dir() (omniduct.remotes.ssh.SSHClient method), 126
dir() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 137
disconnect() (omniduct.caches.base.Cache

method), 149
disconnect() (om-

niduct.caches.filesystem.FileSystemCache
method), 152

disconnect() (om-
niduct.databases.base.DatabaseClient
method), 23

disconnect() (om-
niduct.databases.druid.DruidClient method),
28

disconnect() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 40

disconnect() (om-
niduct.databases.neo4j.Neo4jClient method),

50
disconnect() (om-

niduct.databases.presto.PrestoClient method),
60

disconnect() (om-
niduct.databases.pyspark.PySparkClient
method), 71

disconnect() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 81

disconnect() (omniduct.duct.Duct method), 14
disconnect() (om-

niduct.filesystems.base.FileSystemClient
method), 96

disconnect() (om-
niduct.filesystems.local.LocalFsClient
method), 98

disconnect() (omniduct.filesystems.s3.S3Client
method), 105

disconnect() (om-
niduct.filesystems.webhdfs.WebHdfsClient
method), 113

disconnect() (omniduct.remotes.base.RemoteClient
method), 122

disconnect() (omniduct.remotes.ssh.SSHClient
method), 127

disconnect() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 137

download() (omniduct.filesystems.base.FileSystemClient
method), 95

download() (omniduct.filesystems.local.LocalFsClient
method), 98

download() (omniduct.filesystems.s3.S3Client
method), 106

download() (omniduct.filesystems.webhdfs.WebHdfsClient
method), 113

download() (omniduct.remotes.base.RemoteClient
method), 122

download() (omniduct.remotes.ssh.SSHClient
method), 127

download() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 137

DruidClient (class in omniduct.databases.druid), 27
DruidClient.Type (class in om-

niduct.databases.druid), 28
Duct (class in omniduct.duct), 11
Duct.Type (class in omniduct.duct), 12
DuctRegistry (class in omniduct.registry), 156

E
execute() (omniduct.databases.base.DatabaseClient

method), 17

170 Index

Omniduct Documentation, Release v1.1.19

execute() (omniduct.databases.druid.DruidClient
method), 28

execute() (omniduct.databases.hiveserver2.HiveServer2Client
method), 40

execute() (omniduct.databases.neo4j.Neo4jClient
method), 50

execute() (omniduct.databases.presto.PrestoClient
method), 61

execute() (omniduct.databases.pyspark.PySparkClient
method), 71

execute() (omniduct.databases.sqlalchemy.SQLAlchemyClient
method), 81

execute() (omniduct.remotes.base.RemoteClient
method), 120

execute() (omniduct.remotes.ssh.SSHClient method),
128

execute() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 137

execute_from_file() (om-
niduct.databases.base.DatabaseClient
method), 18

execute_from_file() (om-
niduct.databases.druid.DruidClient method),
29

execute_from_file() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 40

execute_from_file() (om-
niduct.databases.neo4j.Neo4jClient method),
51

execute_from_file() (om-
niduct.databases.presto.PrestoClient method),
61

execute_from_file() (om-
niduct.databases.pyspark.PySparkClient
method), 72

execute_from_file() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 82

execute_from_template() (om-
niduct.databases.base.DatabaseClient
method), 20

execute_from_template() (om-
niduct.databases.druid.DruidClient method),
29

execute_from_template() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 41

execute_from_template() (om-
niduct.databases.neo4j.Neo4jClient method),
51

execute_from_template() (om-
niduct.databases.presto.PrestoClient method),
62

execute_from_template() (om-
niduct.databases.pyspark.PySparkClient
method), 72

execute_from_template() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 82

exists() (omniduct.filesystems.base.FileSystemClient
method), 92

exists() (omniduct.filesystems.local.LocalFsClient
method), 99

exists() (omniduct.filesystems.s3.S3Client method),
106

exists() (omniduct.filesystems.webhdfs.WebHdfsClient
method), 113

exists() (omniduct.remotes.base.RemoteClient
method), 122

exists() (omniduct.remotes.ssh.SSHClient method),
128

exists() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 137

F
FileSystemCache (class in om-

niduct.caches.filesystem), 150
FileSystemCache.Type (class in om-

niduct.caches.filesystem), 151
FileSystemClient (class in om-

niduct.filesystems.base), 90
FileSystemFile (class in om-

niduct.filesystems.base), 96
FileSystemFileDesc (class in om-

niduct.filesystems.base), 96
find() (omniduct.filesystems.base.FileSystemClient

method), 94
find() (omniduct.filesystems.local.LocalFsClient

method), 99
find() (omniduct.filesystems.s3.S3Client method), 106
find() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 113
find() (omniduct.remotes.base.RemoteClient method),

122
find() (omniduct.remotes.ssh.SSHClient method), 128
find() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 138
for_protocol() (om-

niduct.caches.filesystem.FileSystemCache
class method), 152

for_protocol() (om-
niduct.databases.druid.DruidClient class
method), 29

for_protocol() (om-
niduct.databases.hiveserver2.HiveServer2Client
class method), 41

Index 171

Omniduct Documentation, Release v1.1.19

for_protocol() (om-
niduct.databases.neo4j.Neo4jClient class
method), 51

for_protocol() (om-
niduct.databases.presto.PrestoClient class
method), 62

for_protocol() (om-
niduct.databases.pyspark.PySparkClient
class method), 72

for_protocol() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
class method), 82

for_protocol() (omniduct.duct.Duct class method),
13

for_protocol() (om-
niduct.filesystems.local.LocalFsClient class
method), 99

for_protocol() (omniduct.filesystems.s3.S3Client
class method), 106

for_protocol() (om-
niduct.filesystems.webhdfs.WebHdfsClient
class method), 114

for_protocol() (omniduct.remotes.ssh.SSHClient
class method), 128

for_protocol() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
class method), 138

G
get() (omniduct.caches.base.Cache method), 147
get() (omniduct.caches.filesystem.FileSystemCache

method), 152
get_bytecount() (omniduct.caches.base.Cache

method), 147
get_bytecount() (om-

niduct.caches.filesystem.FileSystemCache
method), 152

get_local_uri() (om-
niduct.remotes.base.RemoteClient method),
121

get_local_uri() (omniduct.remotes.ssh.SSHClient
method), 129

get_local_uri() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 138

get_metadata() (omniduct.caches.base.Cache
method), 147

get_metadata() (om-
niduct.caches.filesystem.FileSystemCache
method), 152

get_proxy() (omniduct.registry.DuctRegistry
method), 157

get_total_bytecount() (om-
niduct.caches.base.Cache method), 148

get_total_bytecount() (om-
niduct.caches.filesystem.FileSystemCache
method), 153

global_writes (om-
niduct.filesystems.base.FileSystemClient
attribute), 92

global_writes (om-
niduct.filesystems.local.LocalFsClient at-
tribute), 99

global_writes (omniduct.filesystems.s3.S3Client at-
tribute), 107

global_writes (om-
niduct.filesystems.webhdfs.WebHdfsClient
attribute), 114

global_writes (omniduct.remotes.ssh.SSHClient at-
tribute), 129

global_writes (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
attribute), 138

H
has_key() (omniduct.caches.base.Cache method), 148
has_key() (omniduct.caches.filesystem.FileSystemCache

method), 153
has_namespace() (omniduct.caches.base.Cache

method), 148
has_namespace() (om-

niduct.caches.filesystem.FileSystemCache
method), 153

has_port_forward() (om-
niduct.remotes.base.RemoteClient method),
121

has_port_forward() (om-
niduct.remotes.ssh.SSHClient method), 129

has_port_forward() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 138

HiveServer2Client (class in om-
niduct.databases.hiveserver2), 37

HiveServer2Client.Type (class in om-
niduct.databases.hiveserver2), 38

host (omniduct.caches.filesystem.FileSystemCache at-
tribute), 153

host (omniduct.databases.druid.DruidClient attribute),
30

host (omniduct.databases.hiveserver2.HiveServer2Client
attribute), 41

host (omniduct.databases.neo4j.Neo4jClient attribute),
51

host (omniduct.databases.presto.PrestoClient at-
tribute), 62

host (omniduct.databases.pyspark.PySparkClient at-
tribute), 72

172 Index

Omniduct Documentation, Release v1.1.19

host (omniduct.databases.sqlalchemy.SQLAlchemyClient
attribute), 83

host (omniduct.duct.Duct attribute), 14
host (omniduct.filesystems.local.LocalFsClient at-

tribute), 100
host (omniduct.filesystems.s3.S3Client attribute), 107
host (omniduct.filesystems.webhdfs.WebHdfsClient at-

tribute), 114
host (omniduct.remotes.ssh.SSHClient attribute), 129
host (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

attribute), 139

I
is_connected() (omniduct.caches.base.Cache

method), 149
is_connected() (om-

niduct.caches.filesystem.FileSystemCache
method), 153

is_connected() (om-
niduct.databases.base.DatabaseClient
method), 23

is_connected() (om-
niduct.databases.druid.DruidClient method),
30

is_connected() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 41

is_connected() (om-
niduct.databases.neo4j.Neo4jClient method),
52

is_connected() (om-
niduct.databases.presto.PrestoClient method),
62

is_connected() (om-
niduct.databases.pyspark.PySparkClient
method), 72

is_connected() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 83

is_connected() (omniduct.duct.Duct method), 14
is_connected() (om-

niduct.filesystems.base.FileSystemClient
method), 96

is_connected() (om-
niduct.filesystems.local.LocalFsClient
method), 100

is_connected() (omniduct.filesystems.s3.S3Client
method), 107

is_connected() (om-
niduct.filesystems.webhdfs.WebHdfsClient
method), 114

is_connected() (om-
niduct.remotes.base.RemoteClient method),
123

is_connected() (omniduct.remotes.ssh.SSHClient
method), 129

is_connected() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 139

is_port_bound() (om-
niduct.remotes.base.RemoteClient method),
121

is_port_bound() (omniduct.remotes.ssh.SSHClient
method), 129

is_port_bound() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 139

isdir() (omniduct.filesystems.base.FileSystemClient
method), 93

isdir() (omniduct.filesystems.local.LocalFsClient
method), 100

isdir() (omniduct.filesystems.s3.S3Client method),
107

isdir() (omniduct.filesystems.webhdfs.WebHdfsClient
method), 114

isdir() (omniduct.remotes.base.RemoteClient
method), 123

isdir() (omniduct.remotes.ssh.SSHClient method),
130

isdir() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 139

isfile() (omniduct.filesystems.base.FileSystemClient
method), 93

isfile() (omniduct.filesystems.local.LocalFsClient
method), 100

isfile() (omniduct.filesystems.s3.S3Client method),
107

isfile() (omniduct.filesystems.webhdfs.WebHdfsClient
method), 114

isfile() (omniduct.remotes.base.RemoteClient
method), 123

isfile() (omniduct.remotes.ssh.SSHClient method),
130

isfile() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 139

K
keys() (omniduct.caches.base.Cache method), 148
keys() (omniduct.caches.filesystem.FileSystemCache

method), 153

L
listdir() (omniduct.filesystems.base.FileSystemClient

method), 93
listdir() (omniduct.filesystems.local.LocalFsClient

method), 100
listdir() (omniduct.filesystems.s3.S3Client method),

107

Index 173

Omniduct Documentation, Release v1.1.19

listdir() (omniduct.filesystems.webhdfs.WebHdfsClient
method), 115

listdir() (omniduct.remotes.ssh.SSHClient method),
130

listdir() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 139

LocalFsClient (class in omniduct.filesystems.local),
97

LocalFsClient.Type (class in om-
niduct.filesystems.local), 98

lookup() (omniduct.registry.DuctRegistry method),
157

M
MagicsProvider (class in omniduct.utils.magics), 15
mkdir() (omniduct.filesystems.base.FileSystemClient

method), 94
mkdir() (omniduct.filesystems.local.LocalFsClient

method), 100
mkdir() (omniduct.filesystems.s3.S3Client method),

107
mkdir() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 115
mkdir() (omniduct.remotes.base.RemoteClient

method), 123
mkdir() (omniduct.remotes.ssh.SSHClient method),

130
mkdir() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 140

N
names (omniduct.registry.DuctRegistry attribute), 157
NAMESPACE_DEFAULTS_READ (om-

niduct.databases.base.DatabaseClient at-
tribute), 16

NAMESPACE_DEFAULTS_READ (om-
niduct.databases.druid.DruidClient attribute),
27

NAMESPACE_DEFAULTS_READ (om-
niduct.databases.hiveserver2.HiveServer2Client
attribute), 38

NAMESPACE_DEFAULTS_READ (om-
niduct.databases.neo4j.Neo4jClient attribute),
49

NAMESPACE_DEFAULTS_READ (om-
niduct.databases.presto.PrestoClient attribute),
60

NAMESPACE_DEFAULTS_READ (om-
niduct.databases.pyspark.PySparkClient
attribute), 70

NAMESPACE_DEFAULTS_READ (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
attribute), 80

NAMESPACE_DEFAULTS_WRITE (om-
niduct.databases.base.DatabaseClient at-
tribute), 16

NAMESPACE_DEFAULTS_WRITE (om-
niduct.databases.druid.DruidClient attribute),
27

NAMESPACE_DEFAULTS_WRITE (om-
niduct.databases.hiveserver2.HiveServer2Client
attribute), 38

NAMESPACE_DEFAULTS_WRITE (om-
niduct.databases.neo4j.Neo4jClient attribute),
49

NAMESPACE_DEFAULTS_WRITE (om-
niduct.databases.presto.PrestoClient attribute),
60

NAMESPACE_DEFAULTS_WRITE (om-
niduct.databases.pyspark.PySparkClient
attribute), 70

NAMESPACE_DEFAULTS_WRITE (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
attribute), 80

namespaces (omniduct.caches.base.Cache attribute),
148

namespaces (omniduct.caches.filesystem.FileSystemCache
attribute), 154

Neo4jClient (class in omniduct.databases.neo4j), 48
Neo4jClient.Type (class in om-

niduct.databases.neo4j), 49
new() (omniduct.registry.DuctRegistry method), 156

O
omniduct.caches.base (module), 144
omniduct.filesystems.base (module), 90
omniduct.registry (module), 156
open() (omniduct.filesystems.base.FileSystemClient

method), 94
open() (omniduct.filesystems.local.LocalFsClient

method), 101
open() (omniduct.filesystems.s3.S3Client method), 108
open() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 115
open() (omniduct.remotes.base.RemoteClient method),

123
open() (omniduct.remotes.ssh.SSHClient method), 130
open() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 140

P
ParamikoSSHClient (class in om-

niduct.remotes.ssh_paramiko), 135
ParamikoSSHClient.Type (class in om-

niduct.remotes.ssh_paramiko), 136
password (omniduct.caches.filesystem.FileSystemCache

attribute), 154

174 Index

Omniduct Documentation, Release v1.1.19

password (omniduct.databases.druid.DruidClient at-
tribute), 30

password (omniduct.databases.hiveserver2.HiveServer2Client
attribute), 41

password (omniduct.databases.neo4j.Neo4jClient at-
tribute), 52

password (omniduct.databases.presto.PrestoClient at-
tribute), 62

password (omniduct.databases.pyspark.PySparkClient
attribute), 73

password (omniduct.databases.sqlalchemy.SQLAlchemyClient
attribute), 83

password (omniduct.duct.Duct attribute), 14
password (omniduct.filesystems.local.LocalFsClient

attribute), 101
password (omniduct.filesystems.s3.S3Client attribute),

108
password (omniduct.filesystems.webhdfs.WebHdfsClient

attribute), 115
password (omniduct.remotes.ssh.SSHClient attribute),

131
password (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

attribute), 140
path_basename() (om-

niduct.filesystems.base.FileSystemClient
method), 92

path_basename() (om-
niduct.filesystems.local.LocalFsClient
method), 101

path_basename() (omniduct.filesystems.s3.S3Client
method), 108

path_basename() (om-
niduct.filesystems.webhdfs.WebHdfsClient
method), 115

path_basename() (omniduct.remotes.ssh.SSHClient
method), 131

path_basename() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 140

path_cwd (omniduct.filesystems.base.FileSystemClient
attribute), 91

path_cwd (omniduct.filesystems.local.LocalFsClient
attribute), 101

path_cwd (omniduct.filesystems.s3.S3Client attribute),
108

path_cwd (omniduct.filesystems.webhdfs.WebHdfsClient
attribute), 116

path_cwd (omniduct.remotes.ssh.SSHClient attribute),
131

path_cwd (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
attribute), 141

path_dirname() (om-
niduct.filesystems.base.FileSystemClient
method), 92

path_dirname() (om-
niduct.filesystems.local.LocalFsClient
method), 101

path_dirname() (omniduct.filesystems.s3.S3Client
method), 108

path_dirname() (om-
niduct.filesystems.webhdfs.WebHdfsClient
method), 116

path_dirname() (omniduct.remotes.ssh.SSHClient
method), 131

path_dirname() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 141

path_home (omniduct.filesystems.base.FileSystemClient
attribute), 91

path_home (omniduct.filesystems.local.LocalFsClient
attribute), 101

path_home (omniduct.filesystems.s3.S3Client at-
tribute), 108

path_home (omniduct.filesystems.webhdfs.WebHdfsClient
attribute), 116

path_home (omniduct.remotes.base.RemoteClient at-
tribute), 124

path_home (omniduct.remotes.ssh.SSHClient at-
tribute), 131

path_home (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
attribute), 141

path_join() (omniduct.filesystems.base.FileSystemClient
method), 92

path_join() (omniduct.filesystems.local.LocalFsClient
method), 102

path_join() (omniduct.filesystems.s3.S3Client
method), 109

path_join() (omniduct.filesystems.webhdfs.WebHdfsClient
method), 116

path_join() (omniduct.remotes.ssh.SSHClient
method), 131

path_join() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 141

path_normpath() (om-
niduct.filesystems.base.FileSystemClient
method), 92

path_normpath() (om-
niduct.filesystems.local.LocalFsClient
method), 102

path_normpath() (omniduct.filesystems.s3.S3Client
method), 109

path_normpath() (om-
niduct.filesystems.webhdfs.WebHdfsClient
method), 116

path_normpath() (omniduct.remotes.ssh.SSHClient
method), 132

path_normpath() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient

Index 175

Omniduct Documentation, Release v1.1.19

method), 141
path_separator (om-

niduct.filesystems.base.FileSystemClient
attribute), 91

path_separator (om-
niduct.filesystems.local.LocalFsClient at-
tribute), 102

path_separator (omniduct.filesystems.s3.S3Client
attribute), 109

path_separator (om-
niduct.filesystems.webhdfs.WebHdfsClient
attribute), 116

path_separator (om-
niduct.remotes.base.RemoteClient attribute),
124

path_separator (omniduct.remotes.ssh.SSHClient
attribute), 132

path_separator (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
attribute), 141

populate_namespace() (om-
niduct.registry.DuctRegistry method), 157

port (omniduct.caches.filesystem.FileSystemCache at-
tribute), 154

port (omniduct.databases.druid.DruidClient attribute),
30

port (omniduct.databases.hiveserver2.HiveServer2Client
attribute), 41

port (omniduct.databases.neo4j.Neo4jClient attribute),
52

port (omniduct.databases.presto.PrestoClient at-
tribute), 62

port (omniduct.databases.pyspark.PySparkClient at-
tribute), 73

port (omniduct.databases.sqlalchemy.SQLAlchemyClient
attribute), 83

port (omniduct.duct.Duct attribute), 14
port (omniduct.filesystems.local.LocalFsClient at-

tribute), 102
port (omniduct.filesystems.s3.S3Client attribute), 109
port (omniduct.filesystems.webhdfs.WebHdfsClient at-

tribute), 116
port (omniduct.remotes.ssh.SSHClient attribute), 132
port (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

attribute), 141
port_forward() (om-

niduct.remotes.base.RemoteClient method),
120

port_forward() (omniduct.remotes.ssh.SSHClient
method), 132

port_forward() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 142

port_forward_stop() (om-

niduct.remotes.base.RemoteClient method),
121

port_forward_stop() (om-
niduct.remotes.ssh.SSHClient method), 132

port_forward_stop() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 142

port_forward_stopall() (om-
niduct.remotes.base.RemoteClient method),
121

port_forward_stopall() (om-
niduct.remotes.ssh.SSHClient method), 132

port_forward_stopall() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 142

prepare() (omniduct.caches.base.Cache method), 149
prepare() (omniduct.caches.filesystem.FileSystemCache

method), 154
prepare() (omniduct.databases.base.DatabaseClient

method), 23
prepare() (omniduct.databases.druid.DruidClient

method), 30
prepare() (omniduct.databases.hiveserver2.HiveServer2Client

method), 42
prepare() (omniduct.databases.neo4j.Neo4jClient

method), 52
prepare() (omniduct.databases.presto.PrestoClient

method), 62
prepare() (omniduct.databases.pyspark.PySparkClient

method), 73
prepare() (omniduct.databases.sqlalchemy.SQLAlchemyClient

method), 83
prepare() (omniduct.duct.Duct method), 13
prepare() (omniduct.filesystems.base.FileSystemClient

method), 96
prepare() (omniduct.filesystems.local.LocalFsClient

method), 102
prepare() (omniduct.filesystems.s3.S3Client method),

109
prepare() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 117
prepare() (omniduct.remotes.base.RemoteClient

method), 124
prepare() (omniduct.remotes.ssh.SSHClient method),

132
prepare() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 142
prepare_smartcards() (om-

niduct.remotes.base.RemoteClient method),
120

prepare_smartcards() (om-
niduct.remotes.ssh.SSHClient method), 133

prepare_smartcards() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient

176 Index

Omniduct Documentation, Release v1.1.19

method), 143
PrestoClient (class in omniduct.databases.presto),

59
PrestoClient.Type (class in om-

niduct.databases.presto), 60
prune() (omniduct.caches.base.Cache method), 149
prune() (omniduct.caches.filesystem.FileSystemCache

method), 154
PySparkClient (class in om-

niduct.databases.pyspark), 69
PySparkClient.Type (class in om-

niduct.databases.pyspark), 70

Q
query() (omniduct.databases.base.DatabaseClient

method), 17
query() (omniduct.databases.druid.DruidClient

method), 31
query() (omniduct.databases.hiveserver2.HiveServer2Client

method), 42
query() (omniduct.databases.neo4j.Neo4jClient

method), 52
query() (omniduct.databases.presto.PrestoClient

method), 63
query() (omniduct.databases.pyspark.PySparkClient

method), 73
query() (omniduct.databases.sqlalchemy.SQLAlchemyClient

method), 84
query_from_file() (om-

niduct.databases.base.DatabaseClient
method), 19

query_from_file() (om-
niduct.databases.druid.DruidClient method),
31

query_from_file() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 42

query_from_file() (om-
niduct.databases.neo4j.Neo4jClient method),
53

query_from_file() (om-
niduct.databases.presto.PrestoClient method),
63

query_from_file() (om-
niduct.databases.pyspark.PySparkClient
method), 74

query_from_file() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 84

query_from_template() (om-
niduct.databases.base.DatabaseClient
method), 21

query_from_template() (om-
niduct.databases.druid.DruidClient method),

31
query_from_template() (om-

niduct.databases.hiveserver2.HiveServer2Client
method), 43

query_from_template() (om-
niduct.databases.neo4j.Neo4jClient method),
53

query_from_template() (om-
niduct.databases.presto.PrestoClient method),
63

query_from_template() (om-
niduct.databases.pyspark.PySparkClient
method), 74

query_from_template() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 84

query_to_table() (om-
niduct.databases.base.DatabaseClient
method), 21

query_to_table() (om-
niduct.databases.druid.DruidClient method),
31

query_to_table() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 43

query_to_table() (om-
niduct.databases.neo4j.Neo4jClient method),
53

query_to_table() (om-
niduct.databases.presto.PrestoClient method),
64

query_to_table() (om-
niduct.databases.pyspark.PySparkClient
method), 74

query_to_table() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 84

R
read_only (omniduct.filesystems.base.FileSystemClient

attribute), 92
read_only (omniduct.filesystems.local.LocalFsClient

attribute), 102
read_only (omniduct.filesystems.s3.S3Client at-

tribute), 110
read_only (omniduct.filesystems.webhdfs.WebHdfsClient

attribute), 117
read_only (omniduct.remotes.ssh.SSHClient at-

tribute), 133
read_only (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

attribute), 143
reconnect() (omniduct.caches.filesystem.FileSystemCache

method), 154

Index 177

Omniduct Documentation, Release v1.1.19

reconnect() (omniduct.databases.druid.DruidClient
method), 32

reconnect() (omniduct.databases.hiveserver2.HiveServer2Client
method), 43

reconnect() (omniduct.databases.neo4j.Neo4jClient
method), 53

reconnect() (omniduct.databases.presto.PrestoClient
method), 64

reconnect() (omniduct.databases.pyspark.PySparkClient
method), 74

reconnect() (omniduct.databases.sqlalchemy.SQLAlchemyClient
method), 85

reconnect() (omniduct.duct.Duct method), 15
reconnect() (omniduct.filesystems.local.LocalFsClient

method), 102
reconnect() (omniduct.filesystems.s3.S3Client

method), 110
reconnect() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 117
reconnect() (omniduct.remotes.ssh.SSHClient

method), 133
reconnect() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 143
register() (omniduct.registry.DuctRegistry method),

156
register_from_config() (om-

niduct.registry.DuctRegistry method), 157
register_magics() (om-

niduct.databases.base.DatabaseClient
method), 24

register_magics() (om-
niduct.databases.druid.DruidClient method),
32

register_magics() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 43

register_magics() (om-
niduct.databases.neo4j.Neo4jClient method),
53

register_magics() (om-
niduct.databases.presto.PrestoClient method),
64

register_magics() (om-
niduct.databases.pyspark.PySparkClient
method), 74

register_magics() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 85

RemoteClient (class in omniduct.remotes.base), 119
remove() (omniduct.filesystems.base.FileSystemClient

method), 94
remove() (omniduct.filesystems.local.LocalFsClient

method), 102
remove() (omniduct.filesystems.s3.S3Client method),

110
remove() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 117
remove() (omniduct.remotes.base.RemoteClient

method), 124
remove() (omniduct.remotes.ssh.SSHClient method),

133
remove() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 143
reset() (omniduct.caches.filesystem.FileSystemCache

method), 155
reset() (omniduct.databases.druid.DruidClient

method), 32
reset() (omniduct.databases.hiveserver2.HiveServer2Client

method), 44
reset() (omniduct.databases.neo4j.Neo4jClient

method), 54
reset() (omniduct.databases.presto.PrestoClient

method), 65
reset() (omniduct.databases.pyspark.PySparkClient

method), 75
reset() (omniduct.databases.sqlalchemy.SQLAlchemyClient

method), 85
reset() (omniduct.duct.Duct method), 13
reset() (omniduct.filesystems.local.LocalFsClient

method), 103
reset() (omniduct.filesystems.s3.S3Client method),

110
reset() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 117
reset() (omniduct.remotes.ssh.SSHClient method),

133
reset() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 143

S
S3Client (class in omniduct.filesystems.s3), 104
S3Client.Type (class in omniduct.filesystems.s3),

105
schemas (omniduct.databases.hiveserver2.HiveServer2Client

attribute), 44
schemas (omniduct.databases.presto.PrestoClient at-

tribute), 65
schemas (omniduct.databases.sqlalchemy.SQLAlchemyClient

attribute), 85
session_properties (om-

niduct.databases.base.DatabaseClient at-
tribute), 16

session_properties (om-
niduct.databases.druid.DruidClient attribute),
32

session_properties (om-
niduct.databases.hiveserver2.HiveServer2Client
attribute), 44

178 Index

Omniduct Documentation, Release v1.1.19

session_properties (om-
niduct.databases.neo4j.Neo4jClient attribute),
54

session_properties (om-
niduct.databases.presto.PrestoClient attribute),
65

session_properties (om-
niduct.databases.pyspark.PySparkClient
attribute), 75

session_properties (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
attribute), 85

set() (omniduct.caches.base.Cache method), 146
set() (omniduct.caches.filesystem.FileSystemCache

method), 155
set_metadata() (omniduct.caches.base.Cache

method), 146
set_metadata() (om-

niduct.caches.filesystem.FileSystemCache
method), 155

show_port_forwards() (om-
niduct.remotes.base.RemoteClient method),
121

show_port_forwards() (om-
niduct.remotes.ssh.SSHClient method), 134

show_port_forwards() (om-
niduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 143

showdir() (omniduct.filesystems.base.FileSystemClient
method), 93

showdir() (omniduct.filesystems.local.LocalFsClient
method), 103

showdir() (omniduct.filesystems.s3.S3Client method),
110

showdir() (omniduct.filesystems.webhdfs.WebHdfsClient
method), 117

showdir() (omniduct.remotes.ssh.SSHClient method),
134

showdir() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 143

SQLAlchemyClient (class in om-
niduct.databases.sqlalchemy), 80

SQLAlchemyClient.Type (class in om-
niduct.databases.sqlalchemy), 81

SSHClient (class in omniduct.remotes.ssh), 125
SSHClient.Type (class in omniduct.remotes.ssh),

126
statement_cleanup() (om-

niduct.databases.base.DatabaseClient class
method), 17

statement_cleanup() (om-
niduct.databases.druid.DruidClient class
method), 32

statement_cleanup() (om-

niduct.databases.hiveserver2.HiveServer2Client
class method), 44

statement_cleanup() (om-
niduct.databases.neo4j.Neo4jClient class
method), 54

statement_cleanup() (om-
niduct.databases.presto.PrestoClient class
method), 65

statement_cleanup() (om-
niduct.databases.pyspark.PySparkClient
class method), 75

statement_cleanup() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
class method), 86

statement_hash() (om-
niduct.databases.base.DatabaseClient class
method), 16

statement_hash() (om-
niduct.databases.druid.DruidClient class
method), 33

statement_hash() (om-
niduct.databases.hiveserver2.HiveServer2Client
class method), 44

statement_hash() (om-
niduct.databases.neo4j.Neo4jClient class
method), 54

statement_hash() (om-
niduct.databases.presto.PrestoClient class
method), 65

statement_hash() (om-
niduct.databases.pyspark.PySparkClient
class method), 75

statement_hash() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
class method), 86

stream() (omniduct.databases.base.DatabaseClient
method), 18

stream() (omniduct.databases.druid.DruidClient
method), 33

stream() (omniduct.databases.hiveserver2.HiveServer2Client
method), 44

stream() (omniduct.databases.neo4j.Neo4jClient
method), 55

stream() (omniduct.databases.presto.PrestoClient
method), 65

stream() (omniduct.databases.pyspark.PySparkClient
method), 76

stream() (omniduct.databases.sqlalchemy.SQLAlchemyClient
method), 86

stream_to_file() (om-
niduct.databases.base.DatabaseClient
method), 18

stream_to_file() (om-
niduct.databases.druid.DruidClient method),

Index 179

Omniduct Documentation, Release v1.1.19

33
stream_to_file() (om-

niduct.databases.hiveserver2.HiveServer2Client
method), 45

stream_to_file() (om-
niduct.databases.neo4j.Neo4jClient method),
55

stream_to_file() (om-
niduct.databases.presto.PrestoClient method),
66

stream_to_file() (om-
niduct.databases.pyspark.PySparkClient
method), 76

stream_to_file() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 86

T
table_desc() (om-

niduct.databases.base.DatabaseClient
method), 22

table_desc() (om-
niduct.databases.druid.DruidClient method),
34

table_desc() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 45

table_desc() (om-
niduct.databases.neo4j.Neo4jClient method),
55

table_desc() (om-
niduct.databases.presto.PrestoClient method),
66

table_desc() (om-
niduct.databases.pyspark.PySparkClient
method), 76

table_desc() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 87

table_drop() (om-
niduct.databases.base.DatabaseClient
method), 22

table_drop() (om-
niduct.databases.druid.DruidClient method),
34

table_drop() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 45

table_drop() (om-
niduct.databases.neo4j.Neo4jClient method),
56

table_drop() (om-
niduct.databases.presto.PrestoClient method),
66

table_drop() (om-
niduct.databases.pyspark.PySparkClient
method), 77

table_drop() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 87

table_exists() (om-
niduct.databases.base.DatabaseClient
method), 22

table_exists() (om-
niduct.databases.druid.DruidClient method),
34

table_exists() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 45

table_exists() (om-
niduct.databases.neo4j.Neo4jClient method),
56

table_exists() (om-
niduct.databases.presto.PrestoClient method),
66

table_exists() (om-
niduct.databases.pyspark.PySparkClient
method), 77

table_exists() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 87

table_head() (om-
niduct.databases.base.DatabaseClient
method), 22

table_head() (om-
niduct.databases.druid.DruidClient method),
34

table_head() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 46

table_head() (om-
niduct.databases.neo4j.Neo4jClient method),
56

table_head() (om-
niduct.databases.presto.PrestoClient method),
67

table_head() (om-
niduct.databases.pyspark.PySparkClient
method), 77

table_head() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 87

table_list() (om-
niduct.databases.base.DatabaseClient
method), 21

table_list() (om-
niduct.databases.druid.DruidClient method),
35

180 Index

Omniduct Documentation, Release v1.1.19

table_list() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 46

table_list() (om-
niduct.databases.neo4j.Neo4jClient method),
56

table_list() (om-
niduct.databases.presto.PrestoClient method),
67

table_list() (om-
niduct.databases.pyspark.PySparkClient
method), 77

table_list() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 88

table_partition_cols() (om-
niduct.databases.base.DatabaseClient
method), 22

table_partition_cols() (om-
niduct.databases.druid.DruidClient method),
35

table_partition_cols() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 46

table_partition_cols() (om-
niduct.databases.neo4j.Neo4jClient method),
56

table_partition_cols() (om-
niduct.databases.presto.PrestoClient method),
67

table_partition_cols() (om-
niduct.databases.pyspark.PySparkClient
method), 77

table_partition_cols() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 88

table_props() (om-
niduct.databases.base.DatabaseClient
method), 23

table_props() (om-
niduct.databases.druid.DruidClient method),
35

table_props() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 46

table_props() (om-
niduct.databases.neo4j.Neo4jClient method),
57

table_props() (om-
niduct.databases.presto.PrestoClient method),
67

table_props() (om-
niduct.databases.pyspark.PySparkClient
method), 78

table_props() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 88

template_add() (om-
niduct.databases.base.DatabaseClient
method), 19

template_add() (om-
niduct.databases.druid.DruidClient method),
35

template_add() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 47

template_add() (om-
niduct.databases.neo4j.Neo4jClient method),
57

template_add() (om-
niduct.databases.presto.PrestoClient method),
68

template_add() (om-
niduct.databases.pyspark.PySparkClient
method), 78

template_add() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 88

template_get() (om-
niduct.databases.base.DatabaseClient
method), 19

template_get() (om-
niduct.databases.druid.DruidClient method),
35

template_get() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 47

template_get() (om-
niduct.databases.neo4j.Neo4jClient method),
57

template_get() (om-
niduct.databases.presto.PrestoClient method),
68

template_get() (om-
niduct.databases.pyspark.PySparkClient
method), 78

template_get() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 89

template_names (om-
niduct.databases.base.DatabaseClient at-
tribute), 19

template_names (om-
niduct.databases.druid.DruidClient attribute),
36

template_names (om-
niduct.databases.hiveserver2.HiveServer2Client
attribute), 47

Index 181

Omniduct Documentation, Release v1.1.19

template_names (om-
niduct.databases.neo4j.Neo4jClient attribute),
57

template_names (om-
niduct.databases.presto.PrestoClient attribute),
68

template_names (om-
niduct.databases.pyspark.PySparkClient
attribute), 78

template_names (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
attribute), 89

template_render() (om-
niduct.databases.base.DatabaseClient
method), 20

template_render() (om-
niduct.databases.druid.DruidClient method),
36

template_render() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 47

template_render() (om-
niduct.databases.neo4j.Neo4jClient method),
57

template_render() (om-
niduct.databases.presto.PrestoClient method),
68

template_render() (om-
niduct.databases.pyspark.PySparkClient
method), 78

template_render() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 89

template_variables() (om-
niduct.databases.base.DatabaseClient
method), 19

template_variables() (om-
niduct.databases.druid.DruidClient method),
36

template_variables() (om-
niduct.databases.hiveserver2.HiveServer2Client
method), 48

template_variables() (om-
niduct.databases.neo4j.Neo4jClient method),
58

template_variables() (om-
niduct.databases.presto.PrestoClient method),
69

template_variables() (om-
niduct.databases.pyspark.PySparkClient
method), 79

template_variables() (om-
niduct.databases.sqlalchemy.SQLAlchemyClient
method), 89

U
unset() (omniduct.caches.base.Cache method), 147
unset() (omniduct.caches.filesystem.FileSystemCache

method), 155
unset_namespace() (omniduct.caches.base.Cache

method), 148
unset_namespace() (om-

niduct.caches.filesystem.FileSystemCache
method), 155

update_host_keys() (om-
niduct.remotes.ssh.SSHClient method), 134

upload() (omniduct.filesystems.base.FileSystemClient
method), 95

upload() (omniduct.filesystems.local.LocalFsClient
method), 103

upload() (omniduct.filesystems.s3.S3Client method),
110

upload() (omniduct.filesystems.webhdfs.WebHdfsClient
method), 118

upload() (omniduct.remotes.ssh.SSHClient method),
134

upload() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient
method), 143

username (omniduct.caches.filesystem.FileSystemCache
attribute), 155

username (omniduct.databases.druid.DruidClient at-
tribute), 37

username (omniduct.databases.hiveserver2.HiveServer2Client
attribute), 48

username (omniduct.databases.neo4j.Neo4jClient at-
tribute), 58

username (omniduct.databases.presto.PrestoClient at-
tribute), 69

username (omniduct.databases.pyspark.PySparkClient
attribute), 79

username (omniduct.databases.sqlalchemy.SQLAlchemyClient
attribute), 90

username (omniduct.duct.Duct attribute), 14
username (omniduct.filesystems.local.LocalFsClient

attribute), 103
username (omniduct.filesystems.s3.S3Client attribute),

111
username (omniduct.filesystems.webhdfs.WebHdfsClient

attribute), 118
username (omniduct.remotes.ssh.SSHClient attribute),

135
username (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

attribute), 144

W
walk() (omniduct.filesystems.base.FileSystemClient

method), 94
walk() (omniduct.filesystems.local.LocalFsClient

method), 103

182 Index

Omniduct Documentation, Release v1.1.19

walk() (omniduct.filesystems.s3.S3Client method), 111
walk() (omniduct.filesystems.webhdfs.WebHdfsClient

method), 118
walk() (omniduct.remotes.base.RemoteClient method),

124
walk() (omniduct.remotes.ssh.SSHClient method), 135
walk() (omniduct.remotes.ssh_paramiko.ParamikoSSHClient

method), 144
WebHdfsClient (class in om-

niduct.filesystems.webhdfs), 111
WebHdfsClient.Type (class in om-

niduct.filesystems.webhdfs), 112

Index 183

	Supported protocols
	Installation
	Quickstart
	Task 1: Create a Presto client that connects direct to the database service
	Task 2: Create a Presto client that connects via ssh to a remote server
	Task 3: Persist service configuration for use in multiple sessions

	Deployment
	API & IPython Magics
	Core Classes
	Databases
	Filesystems
	Remotes
	Caches
	Registry Management

	Extensions and Plug-ins
	Contributions
	Indices and tables
	Python Module Index
	Index

